Opportunities for and Benefits of Combined Heat and Power at Wastewater Treatment Facilities **U.S. Environmental Protection Agency Combined Heat and Power Partnership** **April 2007** # Opportunities for and Benefits of Combined Heat and Power at Wastewater Treatment Facilities Prepared by: Eastern Research Group, Inc. www.erg.com Prepared for: U.S. Environmental Protection Agency Combined Heat and Power Partnership December 2006 For more information about the EPA CHP Partnership, please visit: www.epa.gov/chp or email: chpteam@epa.gov. ## **Table of Contents** | Executive Summary | . ii | |---|------| | 1.0 Introduction | . 1 | | 2.0 Data Sources | . 2 | | 3.0 The Market | . 2 | | 3.1 Wastewater Treatment Facilities with Anaerobic Digestion | . 2 | | 3.2 Wastewater Treatment Facilities with CHP | . 4 | | 4.0 Technical Fit | | | 4.1 Electric and Thermal Generation Potential from CHP Systems at Wastewater Treatment | | | Facilities | | | 4.2 National Electric Generation Potential from CHP at Wastewater Treatment Facilities | | | 4.3 Potential Carbon Dioxide Emission Benefits | | | 5.0 Cost-Effectiveness | | | 6.0 Wastewater Treatment Biogas as Renewable Energy | 12 | | 7.0 Additional Resources | | | 7.1 Organizations | | | 7.2 Articles | | | 7.3 Case Studies | 14 | | Appendix A: Full List of U.S. Wastewater Treatment Facilities (> 5 MGD) with at Least One | | | Anaerobic Digester | | | A1: Facilities with no off-gas utilization | | | A2: Facilities with off-gas utilization | | | Appendix B: Anaerobic Digester Design Criteria | 42 | | List of Tables | | | | | | Table 1: U.S. Wastewater Treatment Facilities with Anaerobic Digestion and Off-Gas Utilization | | | by Number | | | Table 2: U.S. Wastewater Treatment Facilities with Anaerobic Digestion and Off-Gas Utilization by Flow Rate | | | Table 3: Number of Wastewater CHP Systems and Total Capacity by State | | | Table 4: Electric and Thermal Energy Potential with CHP for Typically Sized Digester: | . – | | Mesophilic | 6 | | Table 5: Electric and Thermal Energy Potential with CHP for Typically Sized Digester: | | | Thermophilic | | | Table 6: Potential Carbon Dioxide Emission Offsets with CHP at Wastewater Treatment | . , | | Facilities | . 8 | | Table 7: CHP System Performance Characteristics for Cost-Effectiveness Analysis | | | Table 8: Estimated Capital Costs for Three CHP Systems at Wastewater Treatment Facilities | | | Table 9: Net Power Cost Estimates for Three CHP Systems at Wastewater Treatment Facilities | | | Tuble 9. Thet I ower Cost Estimates for Times CIT Systems at Waste water Treatment I activities | | | | | ### **Executive Summary** As part of its broader outreach and education efforts to expand knowledge of the benefits and applications of combined heat and power (CHP), the U.S. Environmental Protection Agency's (EPA's) CHP Partnership (CHPP) has undertaken targeted efforts to increase CHP use in three specific market sectors: dry mill ethanol production, hotels/casinos, and wastewater treatment. The CHPP's work in these sectors is intended to serve two main audiences: energy users and industry Partners. Sector-specific information on the technical and economic benefits of CHP is provided so energy users can consider employing CHP at their own facilities. Market analyses help our CHP industry Partners increase their penetration into these sectors. This guide presents the opportunities for and benefits of CHP applications at municipal wastewater treatment facilities (WWTFs), also known as publicly owned treatment works (POTWs). CHP is a reliable, cost-effective option for WWTFs that have, or are planning to install, anaerobic digesters. The biogas flow from the digester can be used as "free" fuel to generate electricity and power in a CHP system using a turbine, microturbine, fuel cell, or reciprocating engine. The thermal energy produced by the CHP system is then typically used to meet digester heat loads and for space heating. A well-designed CHP system offers many benefits for WWTFs because it: - Produces power at a cost below retail electricity. - Displaces purchased fuels for thermal needs. - Qualifies as a renewable fuel for green power programs. - Enhances power reliability for the plant. - Offers an opportunity to reduce greenhouse gas and other air emissions. The primary purpose of this guide is to provide basic information for assessing the potential technical fit for CHP at WWTFs that have anaerobic digesters. It is intended to be used by CHP project developers, WWTF operators, and other parties who are interested in exploring the benefits of CHP for a WWTF. The guide provides the following information: - The size of facilities that have the greatest potential for employing cost-effective CHP. - Rules of thumb for estimating a CHP system's potential electricity and thermal outputs based on wastewater flow rate. - The emission reduction benefits associated with CHP at WWTFs. - The cost-effectiveness of CHP at WWTFs. - Strategic issues involved with employing CHP at WWTFs. Through its market and technical analyses, the CHPP has found that: - CHP is a strong technical fit for many WWTFs. - CHP is commercially available and has been proven effective in application at WWTFs. - CHP can be a compelling investment at WWTFs, depending on local electricity prices and fuel costs. - CHP offers additional values and benefits for WWTFs, including offset equipment costs, increased reliability, and emission reductions. - CHP has been underutilized at WWTFs to date. Specifically, the CHPP estimates that if all 544 WWTFs in the United States that operate anaerobic digesters and have influent flow rates greater than 5 MGD were to install CHP, approximately 340 MW of clean electricity could be generated, offsetting 2.3 million metric tons of carbon dioxide emissions annually. These reductions are equivalent to planting approximately 640,000 acres of forest, or the emissions of approximately 430,000 cars. ## **Engineering Rules of Thumb for Considering CHP at a WWTF** - A typical WWTF processes 100 gallons per day of wastewater for every person served.1 - Approximately 1.0 cubic foot (ft³) of digester gas can be produced by an anaerobic digester per person per day.² This volume of gas can provide approximately 2.2 Watts of power generation.³ - The heating value of the biogas produced by anaerobic digesters is approximately 600 British thermal units per cubic foot (Btu/ft³).⁴ - For each 4.5 MGD processed by a WWTF with anaerobic digestion, the generated biogas can produce approximately 100 kilowatts (kW) of electricity.⁵ Great Lakes-Upper Mississippi Board of State and Provincial Public Health and Environmental Managers, [&]quot;Recommended Standards for Wastewater Facilities (Ten-State Standards)," 2004. ² Metcalf & Eddy, "Wastewater Engineering: Treatment, Disposal, Reuse," 1991. ³ Assumes the energy content of biogas is 600 Btu/ft³, and the power is produced using a 30 percent efficient electric generator. ⁴ Metcalf & Eddy, "Wastewater Engineering: Treatment, Disposal, Reuse," 1991. ⁵ See section 4.1: Electric and Thermal Generation Potential from CHP Systems. ### 1.0 Introduction Today, more than 16,000 municipal wastewater treatment facilities (WWTFs) operate in the United States, ranging in capacity from several hundred million gallons per day (MGD) to less than 1 MGD. Roughly 1,000 of these facilities operate with a total influent flow rate greater than 5 MGD, but only 544 of these facilities employ anaerobic digestion to process the wastewater. Moreover, only 106 WWTFs utilize the biogas produced by their anaerobic digesters to generate electricity and/or thermal energy. In places where the spark spread¹ is favorable, great potential for combined heat and power (CHP) at WWTFs exists. The U.S. Environmental Protection Agency's (EPA's) Combined Heat and Power Partnership (CHPP) has developed this guide to provide basic information for assessing the potential technical fit of CHP at WWTFs that have anaerobic digesters. The guide is intended to be used by CHP project developers, WWTF operators, and other parties who are interested in exploring the benefits of CHP for a WWTF. Though outside the scope of the remainder of this guide, WWTFs that do not presently employ anaerobic digesters for biosolids management should note that the benefits of CHP deployment at a WWTF are in addition to the typical benefits of anaerobic digesters, which include: - Production of biogas that can offset purchased fuel and be used in a CHP system. - Enhanced power reliability at the facility if biogas is used to produce backup power. - Reduced odors and uncontained methane emissions. - Additional revenue streams, such as soil fertilizers that can be produced from digester effluent. The CHPP based its analyses of the opportunities for and benefits of CHP within the wastewater treatment market sector on data obtained from the 2004 Clean Watersheds Needs Survey (CWNS), Energy and Environmental Analysis, Inc.'s (EEA's) Combined Heat and Power Installation Database, and additional independent research. The guide is organized as follows: - Section 2 introduces the wastewater treatment data used for the CHPP's analyses, including information on data collection and limitations. - Section 3 describes the potential market for CHP at WWTFs. - Section 4 explains the technical fit for CHP at WWTFs, presenting the CHPP's analyses of electric and thermal energy generation potential at WWTFs, and the associated greenhouse gas emissions benefits. - Section 5 presents cost-effectiveness information for CHP at WWTFs. - Section 6 presents some strategic issues related to installing CHP at WWTFs, including the potential eligibility for renewable fuel credits and clean energy funding. - Section 7 lists additional
sources of relevant information. - Appendix A includes a full list of WWTFs in the United States with flow rates greater than 5 MGD that have at least one anaerobic digester. This list includes the potential electricity capacity a CHP system could produce at each facility. - Appendix B presents the anaerobic digester design criteria and models used in the analyses. ¹ Spark spread is the differential between the price of electricity and the price of natural gas or other fuel used to generate electricity, expressed in equivalent units. ### 2.0 Data Sources To develop an overview of the wastewater treatment sector and the potential energy available for CHP, the CHPP used publicly available information contained in the 2004 Clean Watersheds Needs Survey (CWNS) Database², EEA's Combined Heat and Power Installation Database³, and conducted independent research. The CWNS is conducted as a joint effort between EPA's Office of Wastewater Management and the states in response to Section 205(a) and 516 of the Clean Water Act. The CWNS contains information on POTWs, facilities for control of sanitary sewer overflows (SSOs), combined sewer overflows (CSOs), stormwater control activities, nonpoint sources, and programs designed to protect the nation's estuaries. Wastewater facilities voluntarily report facility-specific information through a survey, and information obtained from the survey is maintained in the CWNS Database. The collected data are used to produce a Report to Congress that provides an estimate of clean water needs for the United States. The 2004 CWNS contains information on 16,676 operating wastewater treatment facilities. Several limitations exist when using the CWNS data to analyze the potential for CHP at WWTFs. First, the data are voluntarily reported. As such, a completely accurate picture of wastewater activity cannot be obtained from the CWNS. Second, although facilities report if they have anaerobic digesters, the CWNS does not indicate how many digesters are in operation at a facility, or how facilities use the produced biogas. Third, the data contained in the 2004 CWNS are two years old, and therefore might not reflect the current state of operations for each plant. The Combined Heat and Power Installation Database is maintained by EEA for the U.S. Department of Energy and Oak Ridge National Laboratory. The database lists all CHP systems in operation in the United States. Information is gathered in real time and originates from industry literature, manufacturer contacts, regional CHP centers, and EPA. The database is a work in progress, and EEA notes that all data might not be complete. The CHPP also conducted independent research, which included reviewing case studies of WWTFs that employ CHP, acquiring accepted carbon dioxide emissions factors for power generation, and utilizing the extensive CHP resources and contacts available to the CHPP. ### 3.0 The Market ### 3.1 Wastewater Treatment Facilities with Anaerobic Digestion To evaluate the market potential for CHP systems in the wastewater treatment sector, the CHPP queried the CWNS Database to determine the number of WWTFs using anaerobic digestion. The CHPP focused on facilities with anaerobic digesters because anaerobic digesters have the ability to produce "free" fuel (i.e., biogas), and they have a heat load that a CHP system can meet. The CHPP then categorized WWTFs by influent flow rate to evaluate the CHP potential for various sizes of WWTFs. The minimum flow rate for WWTFs included in the analysis is 5 MGD, which is based on previous analyses performed by the CHPP that showed that WWTFs with influent flow rates less than 5 MGD could not produce enough biogas from anaerobic digestion of ² The 2004 CWNS is available through EPA's Office of Wastewater Management. ³ EEA's Combined Heat and Power Installation Database can be accessed online at: www.eea-inc.com/chpdata/index.html biosolids to make CHP technically and economically feasible. Table 1 shows the number of WWTFs with anaerobic digestion and off-gas utilization, and Table 2 shows the flow rate to WWTFs with anaerobic digestion and off-gas utilization. Table 1: U.S. Wastewater Treatment Facilities with Anaerobic Digestion and Off-Gas Utilization by Number | WWTFs by
Wastewater
Flow Rates
(MGD) | Total
WWTFs | WWTFs with
Anaerobic
Digestion | WWTFs with
Anaerobic Digestion
and Gas Utilization | Percentage of WWTFs with
Anaerobic Digestion that
Utilize Biogas | |---|----------------|--------------------------------------|--|--| | > 200 | 15 | 10 | 5 | 50 | | 100 - 200 | 26 | 17 | 9 | 53 | | 75 – 100 | 27 | 16 | 7 | 44 | | 50 – 75 | 30 | 18 | 5 | 28 | | 20 – 50 | 178 | 87 | 25 | 29 | | 10 – 20 | 286 | 148 | 19 | 13 | | 5 – 10 | 504 | 248 | 36 | 15 | | Total | 1,066 | 544 | 106 | 19 | Source: 2004 Clean Watersheds Needs Survey Table 2: U.S. Wastewater Treatment Facilities with Anaerobic Digestion and Off-Gas Utilization by Flow Rate | WWTFs by
Wastewater
Flow Rates
(MGD) | Total
WWTFs | Total Wastewater Flow at WWTFs (MGD) | Wastewater Flow to WWTFs with Anaerobic Digestion (MGD) | Wastewater Flow
to WWTFs with
Anaerobic
Digestion and Gas
Utilization (MGD) | Wastewater Flow to WWTFs with Anaerobic Digestion and No Gas Utilization (MGD) | |---|----------------|--------------------------------------|---|---|--| | > 200 | 15 | 5,147 | 3,783 | 1,530 | 2,253 | | 100 - 200 | 26 | 3,885 | 2,652 | 1,462 | 1,190 | | 75 – 100 | 27 | 2,321 | 1,350 | 604 | 745 | | 50 – 75 | 30 | 1,847 | 1,125 | 327 | 798 | | 20 – 50 | 178 | 5,373 | 2,573 | 698 | 1,876 | | 10 – 20 | 286 | 3,883 | 2,036 | 261 | 1,775 | | 5 – 10 | 504 | 3,489 | 1,728 | 257 | 1,471 | | Total | 1,066 | 25,945 | 15,247 | 5,140 | 10,107 | Source: 2004 Clean Watersheds Needs Survey The 2004 CWNS identified 16,676 operational WWTFs in the United States. As Tables 1 and 2 show, only 1,066 of these facilities have flow rates greater than 5 MGD. The data in Table 1 indicate that for WWTFs with total influent flow rates greater than 5 MGD, nearly 50 percent (544/1,066) operate anaerobic digesters for biosolids management. However, only about 19 percent (106/544) of the WWTFs with anaerobic digestion utilize digester gas for heating or electricity generation. The CHPP assumes that the remaining WWTFs with anaerobic digestion flare their digester gas. The data in Table 1 also indicate that larger WWTFs tend to use their digester gas, while smaller WWTFs do not. Specifically, 50 percent of WWTFs with design influent flows greater than 200 MGD utilize the biogas generated from anaerobic digesters, while only 13 percent of WWTFs with influent flows ranging between 10 and 20 MGD utilize the digester gas. The data in Table 2 indicate that, for WWTFs with total influent flow greater than 5 MGD, roughly 58 percent (15,247 MGD/25,945 MGD) of all wastewater flow goes to facilities with anaerobic digestion. However, only 20 percent (5,140 MGD/25,945 MGD) of wastewater flow goes to facilities with anaerobic digestion and gas utilization. ### 3.2 Wastewater Treatment Facilities with CHP As of December 2006, wastewater treatment CHP systems were in place at 76 sites in 24 states, representing 220 megawatts (MW) of capacity. Table 3 shows the number of sites by state, as well as the total CHP capacity in each state. California and Oregon have the largest number of facilities with CHP systems, and Massachusetts has the largest installed capacity. Table 3: Number of Wastewater CHP Systems and Total Capacity by State | State | Sites | Capacity (MW) | |----------------------|-------------|---------------| | AR | 1 | 1.7 | | AZ | 1 | 4.2 | | CA | 23 | 38.1 | | CO | 2
1 | 7.9 | | CA
CO
CT
FL | | 0.2 | | FL | 1 | 6.0 | | IA
ID
IL | 2
2
2 | 3.4 | | ID | 2 | 0.5 | | IL | 2 | 4.3 | | MA | 1 | 76.0 | | MN | 2 | 5.1 | | MT | 3 | 1.1 | | NE | 3 | 5.4 | | NH | 1 | 0.4 | | NJ | 3
5 | 4.6 | | NY
OH
OR | | 13.3 | | OH | 1 | 0.1 | | OR | 10 | 5.9 | | PA | 3 | 22.4 | | UT | | 2.6 | | PA
UT
VA | 1 | 3.0 | | WA | 3 | 13.6 | | WI | 2 | 0.5 | | WY | 1 | 0.03 | | Total | 76 | 220.1 | Source: EEA Combined Heat and Power Installation Database ### 4.0 Technical Fit Anaerobic digestion is the key indicator of CHP potential at WWTFs because the process generates biogas containing approximately 60 percent methane. The biogas can be used as fuel for a number of purposes: - To fire boilers and hot water heaters needed to maintain optimal digester temperatures and provide space heating. - To generate electricity to operate pumps and blowers used throughout the treatment process. - To generate electricity using equipment such as microturbines for onsite use and/or to sell back to the grid. Anaerobic digestion produces biogas on a continuous basis, allowing for constant electricity production. Internal process heat used for the digesting process represents the most common use of wastewater treatment methane, but great potential exists for facilities to use the generated biogas for CHP applications. # **4.1 Electric and Thermal Generation Potential from CHP Systems at Wastewater Treatment Facilities** To determine the electricity and thermal energy generation potential for CHP at WWTFs, the CHPP modeled the fuel produced and required by two typically sized digesters—one mesophilic digester and one thermophilic digester.⁴ Each digester model was based on a total influent flow rate of 9.1 MGD.⁵ This wastewater flow rate produces roughly 91,000 standard cubic feet (ft³) of biogas per
day, which has an energy content of 58.9 million British thermal units per day (MMBtu/day).⁶ Both types of digesters were modeled for summer and winter operation. Appendix B contains the digester design criteria used for the analysis. The CHPP estimated the biogas utilization of each model digester under four possible cases of biogas utilization. The first case assumes no CHP system, where only the amount of biogas needed for the digester heat load is utilized and the rest is flared. The other three cases assume that a CHP system utilizes the captured biogas to produce both electricity and thermal energy. The three modeled CHP systems include an internal combustion engine, a microturbine, and a fuel cell. In its analysis, the CHPP used a current industry average electric efficiency for each CHP technology as listed in the "Catalogue of CHP Technologies." However, the possibility for employing a CHP system capable of achieving greater electric efficiencies exists. The use of any CHP technology must be determined by both the site and policy conditions of a particular location. Tables 4 and 5 present the results for each of these models. In each table, the results represent an average of winter and summer digester operation. As Tables 4 and 5 illustrate, an influent flow rate of 9.1 MGD can produce approximately 200 kilowatts (kW) of electricity along with roughly 25 MMBtu/day of thermal energy. Using the biogas from a typically sized digester, a fuel cell CHP system can produce the most electricity (roughly 285 kW). The thermal output of a fuel cell also most closely matches the heat load of 5 ⁴ Two conventional anaerobic digestion processes exist: mesophilic and thermophilic. Both have heat loads. The mesophilic process takes place at ambient temperatures typically between 70° F and 100° F; the thermophilic process takes place at elevated temperatures, typically up to 160° F. Due to the temperature differences between the two processes, the residence time of the sludge varies. In the case of mesophilic digestion, residence time may be between 15 and 30 days. The thermophilic process is usually faster, requiring only about two weeks to complete. However, thermophilic digestion is usually more expensive because it requires more energy and is less stable than the mesophilic process. ⁵ The total influent flow rate of 9.1 MGD is based on the sludge capacity of a typically sized digester (i.e., 20 ft. deep and 40 to 60 feet in diameter). See Appendix B for the digester design parameters. ⁶ Biogas generation was calculated based on 100 gallons of wastewater flow per day per capita, and approximately 1.0 cubic foot per day of digester gas per capita (See "Engineering Rules of Thumb" in Executive Summary for sources). Although the values used to calculate gas generation are empirical, they do provide a good estimate of gas volume. For example, the city of Rockford, Illinois, operates an anaerobic digester for biosolids management at its wastewater treatment plant. The wastewater plant receives on average 32 MGD of raw wastewater, and its anaerobic digester produces 320,000 ft³ per day of biogas (i.e., 1.0 ft³/100 gallons of raw wastewater). ⁷ The "Catalogue of CHP Technologies" can be downloaded from the CHPP Web site at: www.epa.gov/chp/project_resources/catalogue.htm. the digester (which minimizes the amount of heat that is wasted). In many cases, however, the use of fuel cells is limited due to high cost. The two more common CHP systems employed at WWTFs—internal combustion engines and microturbines—can produce roughly 200 kW of electricity and 25 MMBtu/day of thermal energy with a wastewater flow rate of 9.1 MGD. This analysis indicates that roughly 100 kW of electric capacity can result from a total wastewater influent flow rate of 4.5 MGD. Table 4: Electric and Thermal Energy Potential with CHP for Typically Sized Digester: Mesophilic | | No CHP
system | Microturbine
CHP | Fuel Cell
CHP | Internal
Combustion
Engine CHP | |---|------------------|---------------------|------------------|--------------------------------------| | Total POTW flow (MGD) | 9.1 | 9.1 | 9.1 | 9.1 | | | | | | | | Heat requirement for sludge (Btu/day) | 5,148,750 | 5,148,750 | 5,148,750 | 5,148,750 | | Wall heat transfer (Btu/day) | 541,727 | 541,727 | 541,727 | 541,727 | | Floor heat transfer (Btu/day) | 507,869 | 507,869 | 507,869 | 507,869 | | Roof heat transfer (Btu/day) | 326,231 | 326,231 | 326,231 | 326,231 | | | | | | | | Total digester heat load (Btu/day) | 6,524,577 | 6,524,577 | 6,524,577 | 6,524,577 | | Heat required for digester heat load* (Btu/day) | 8,155,721 | | | | | Heat potential of gas (Btu/day) | 54,370,800 | 54,370,800 | 54,370,800 | 54,370,800 | | % of gas used for digester heat load (Btu/day) | 15.0% | | | | | Amount of gas flared** (Btu/day) | 46,215,079 | | | | | Electric Efficiency | | 0.28 | 0.43 | 0.30 | | Power to heat ratio | | 0.61 | 1.95 | 0.64 | | Electric production (Btu/day) | | 15,223,824 | 23,379,444 | 16,311,240 | | Electric production (kW) | | 186 | 286 | 199 | | Heat recovery (Btu/day) | | 24,957,089 | 11,989,458 | 25,486,313 | | Additional heat available*** (Btu/day) | | 18,432,512 | 5,464,882 | 18,961,736 | Note: Assumes 50 percent summer and 50 percent winter. - ^{*}Assumes 80 percent efficient boiler. ^{**}Assumes no other uses except boiler. ^{***}Assumes digester is only heat load. ⁸ Table 5 indicates that the thermal generation from a fuel cell CHP system does not meet the thermophilic digester heat load. Running less biogas through the fuel cell and using it to produce heat for the digester would rectify this, but less electricity would be produced. Table 5: Electric and Thermal Energy Potential with CHP for Typically Sized Digester: Thermophilic | | No CHP
system | Microturbine
CHP | Fuel Cell CHP | Internal
Combustion
Engine CHP | |---|------------------|---------------------|---------------|--------------------------------------| | Total POTW flow (MGD) | 9.1 | 9.1 | 9.1 | 9.1 | | | | | | | | Heat requirement for sludge (Btu/day) | 11,155,625 | 11,155,625 | 11,155,625 | 11,155,625 | | Wall heat transfer (Btu/day) | 490,799 | 490,799 | 490,799 | 490,799 | | Floor heat transfer (Btu/day) | 419,334 | 419,334 | 419,334 | 419,334 | | Roof heat transfer (Btu/day) | 343,303 | 343,303 | 343,303 | 343,303 | | | | | | | | Total digester heat load (Btu/day) | 12,409,061 | 12,409,061 | 12,409,061 | 12,409,061 | | Heat required for digester heat load* (Btu/day) | 15,511,327 | | | | | Heat potential of gas (Btu/day) | 54,370,800 | 54,370,800 | 54,370,800 | 54,370,800 | | % of gas used for digester heat load (Btu/day) | 28.53% | | | | | Amount of gas flared** (Btu/day) | 38,859,473 | | | | | Electric efficiency | | 0.28 | 0.43 | 0.30 | | Power to heat ratio | | 0.61 | 1.95 | 0.64 | | Electric production (Btu/day) | | 15,223,824 | 23,379,444 | 16,311,240 | | Electric production (kW) | | 186 | 286 | 199 | | Heat recovery (Btu/day) | | 24,957,089 | 11,989,458 | 25,486,313 | | Additional heat available*** (Btu/day) | | 12,548,027 | -419,603 | 13,077,251 | Note: Assumes 50 percent summer and 50 percent winter. # **4.2** National Electric Generation Potential from CHP at Wastewater Treatment Facilities The 2004 CWNS identified 10,107 MGD of wastewater flow at facilities greater than 5 MGD that have anaerobic digestion but no biogas utilization. If these facilities were to employ a CHP system, approximately 225 MW of electric capacity could be produced. The CWNS also identified 5,140 MGD of wastewater flow at facilities greater than 5 MGD that have anaerobic digestion with biogas utilization. Anecdotal evidence suggests that very few facilities with anaerobic digestion and off-gas utilization use the biogas for electricity generation. As such, assuming these facilities only use the captured biogas for digester heat loads, an additional 115 MW of electric capacity could be produced. CHP at WWTFs represents an excellent technical fit, with the ability to generate roughly 340 MW of electric capacity that could be used for onsite electricity needs or sold back to the electric grid. Appendix A lists all U.S. WWTFs greater than - ^{*}Assumes 80 percent efficient boiler. ^{**}Assumes no other uses except boiler. ^{***}Assumes digester is only heat load. ⁹ Assumes 100 kW of electric capacity results from a wastewater influent flow rate of 4.5 MGD. $^{^{10}}$ The CHPP recognizes that the total flow rate identified by the 2004 CWNS at facilities that have anaerobic digestion and use the captured biogas does not yield the CHP capacity reported in Table 3 when using 4.5 MGD = 100kW. This is most likely due to the two-year time difference between 2006 data and the 2004 dataset, and the fact that not all WWTFs report data for the CWNS. 5 MGD that have at least one anaerobic digester and notes the electric generation potential associated with CHP utilization for each facility. ### 4.3 Potential Carbon Dioxide Emission Benefits The CHPP estimated the potential carbon dioxide emission offsets associated with increased use of CHP at WWTFs. To estimate these emission reductions, the CHPP assumed the following: - Biogas from WWTFs is biogenic; therefore, utilizing it in a CHP system yields no net positive carbon dioxide emissions. - 100 kW of electric grid capacity is offset with an influent flow rate of 4.5 MGD. - WWTFs with anaerobic digestion and no off-gas utilization use natural gas for their digester heat loads. Using CWNS data, a total of 2.3 million metric tons of carbon dioxide emission reductions can be achieved through increased use of CHP at WWTFs. These reductions are equivalent to planting approximately 640,000 acres of forest, or the emissions of approximately 430,000 cars. Table 6 presents these results. Table 6: Potential Carbon Dioxide Emission Offsets with CHP at Wastewater Treatment Facilities
| | All WWTFs with
anaerobic digestion, but
no gas utilization
(>5MGD) | All WWTFs with anaerobic digestion and gas utilization, assuming all gas used for digester heat load only (>5 MGD) | |---|---|--| | Total flow (MGD) | 10,107 | 5,140 | | (kW/MGD) | 22 | 22 | | Total electric offset (kW) | 224,598 | 114,221 | | (MMBtu/day) | 18,392 | 9,353 | | Electrical Emission Offset (tons CO2/year) | 1,527,229 | 776,685 | | (metric tons CO2/year) | 1,388,390 | 706,078 | | Number of 9.1 MGD digesters | 1,111 | | | Heat load per digester* (MMBtu/day) | 12 | | | | | | | Total heat offset (MMBtu/day) | 13,139 | | | Heat Emission Offset (tons CO2/year) | 280,553 | | | (metric tons CO2/year) | 255,048 | | | | | | | Potential Offsets (metric tons CO2/year) | 1,643,438 | 706,078 | | Acres of forest | 448,330 | 192,618 | | Cars | 298,887 | 128,412 | | | | | | Total Potential Offsets (metric tons | | | | CO2/year) | 2,349,516 | | | Acres of forest | 640,948 | | | Cars | 427,299 | | ### **5.0 Cost-Effectiveness** A well designed CHP system can be an attractive investment for a WWTF. A CHP system allows a WWTF to generate both electric and thermal energy on site, offsetting the costs of grid power and purchased fuel. To highlight the cost savings of generating energy with a CHP system at a WWTF, the CHPP estimated the cost-effectiveness of three representative CHP systems ¹¹ that would be appropriate for different size WWTFs: - 130 kW microturbine - 300 kW carbonate fuel cell - 1,060 kW reciprocating engine Each WWTF considering CHP will need to perform its own site-specific feasibility analysis to determine potential biogas generation rates; methods to compress, clean, and dry the biogas before combustion; and the specific costs and benefits of generating onsite heat and electricity for their WWTF. In states where electricity prices are low, using biogas directly in boilers might be the best investment for a WWTF. Based on influent flow rates and typical digester heat loads (as presented in Section 4.1, Tables 4 and 5), the microturbine would be appropriate for a small WWTF with a minimum influent flow rate of 6.8 MGD. The fuel cell could serve a medium-size WWTF with a minimum influent flow rate of 10.7 MGD. The reciprocating engine would be appropriate for a large WWTF with at least a 41.4 MGD influent flow rate. Table 7 presents the system performance characteristics for the three sample CHP systems on which the economic analyses are based. The electric output that can be generated from the digester gas input and the amount of heat that can be recovered drive the project economics. . ¹¹ Data used for performing these analyses were based on actual prices and performance characteristics of commercially available equipment (as stated by the manufacturers). To avoid implicitly endorsing any manufacturers or products, the CHPP has removed the brand names from the discussion of these systems. Table 7: CHP System Performance Characteristics for Cost-Effectiveness Analysis | | CHP System Type | | | | | |---|-----------------|-----------|---------------------|--|--| | Performance Characteristic | Microturbine | Fuel Cell | ReciprocatingEngine | | | | Minimum WWTF Size (MGD) | 6.8 | 10.7** | 41.4 | | | | Digester Biogas Produced/day (MMBtu) | 40.7 | 58.0 | 247.4 | | | | Name Late ConstitutiON | 120 | 200 | 1.000 | | | | Nameplate Capacity (kW) Compressor/Aux. (kW) | 130 | 300 | 1,060 | | | | Net Output* (kW) | 126 | 300 | 1,060 | | | | Electrical Efficiency | 26.1% | 42.3% | 35.1% | | | | Electricity Production/day (kWh) | 3,024 | 7,200 | 35,440 | | | | Electric/Thermal Output Ratio | 0.86 | 2.84 | 0.82 | | | | Heat Rate (Btu/kWh HHV) | 13,050 | 8,060 | 9,724 | | | | Thermal Output (Btu/kWh) | 3,984 | 1,200 | 4,173 | | | | Heat Production/day (MMBtu) | 12.0 | 8.6 | 106.2 | | | ^{*} The net power output of the microturbine system is adjusted because the fuel must be compressed to about 75 to 100 psig using an electrically driven fuel compressor. Table 8 presents the capital costs for the three sample CHP systems. The largest cost component for each system is the gen-set package which contains the prime mover and the generator. The next major cost component is the fuel treatment system to ensure that the biogas is of operational quality. Fuel treatment can consist of chillers, moisture separators, hydrogen sulfide removal vessels, siloxane removal vessels, heat exchangers, blowers, and connections. Switchgear and controls are required for system operation and paralleling with the utility grid. Additional switchgear (transfer switches, wiring, and electrical panels) would also be needed if the WWTF decides to configure back-up capabilities into the system (i.e., to allow the system to serve critical loads during a utility outage). The heat recovery equipment in each of these sample systems produces hot water for the digesters and other facility needs. For the three CHP systems, the major equipment costs range from 58 to 65 percent of the total installed costs. Remaining costs include those for design, engineering, consulting, installation, and obtaining necessary permits. Typically, municipal facilities use a design-bid-build approach in which the facility is first designed and then the system components are competitively bid. In order to have a better integrated package, some facility managers suggest employing a design-build approach. However, using this contracting avenue might necessitate a special municipal directive.¹² The capital costs shown in Table 8 do not include any credits for federal or state incentive programs that might be available either to stimulate renewable energy, reduce greenhouse gas emissions, promote high efficiency, or to support particular technologies, such as fuel cells. These credits can significantly enhance the economic value of CHP to WWTFs. 10 _ ^{**} The fuel cell does not produce enough waste heat to meet the digester heat load. About 10 percent of the available digester gas must go directly to a supplemental boiler. The 10.7 MGD size is 10 percent more than the 9.7 MGD needed to fuel a 300 kW fuel cell. ¹² Gresham Waste Water Treatment Plant: Case Study, Energy Trust of Oregon (prepared by Energy and Environmental Analysis, Inc.) September 2006. **Table 8: Estimated Capital Costs for Three CHP Systems at Wastewater Treatment Facilities** | | CHP System Type | | | | | | | |------------------------------|-----------------|----------------------|-------------|------------------------|-------------|--|--| | Capital Cost | | tW (net)
oturbine | 300 kW | Fuel Cell | / | 1,060 kW Internal
Combustion Engine | | | | Cost (\$) | Cost per kW (\$/kW) | Cost (\$) | Cost per kW
(\$/kW) | Cost (\$) | Cost per kW (\$/kW) | | | Gen-Set | \$143,000 | \$1,135 | \$1,200,000 | \$4,000 | \$685,000 | \$646 | | | Fuel Gas Compressor | \$15,600 | \$124 | | | | | | | Fuel Treatment | \$89,000 | \$706 | \$147,000 | \$490 | \$313,000 | \$295 | | | Switchgear & Controls | \$19,500 | \$155 | \$97,600 | \$325 | \$125,000 | \$118 | | | Heat Recovery | \$26,000 | \$206 | \$23,200 | \$77 | \$100,000 | \$94 | | | Total Equipment Costs | \$293,100 | \$2,326 | \$1,467,800 | \$4,893 | \$1,223,000 | \$1,154 | | | Consulting and Design | \$114,400 | \$908 | \$125,000 | \$417 | \$150,000 | \$142 | | | Installation | \$23,400 | \$186 | \$433,500 | \$1,445 | \$576,500 | \$544 | | | Permits & Inspection | \$9,750 | \$77 | \$25,000 | \$83 | \$25,000 | \$24 | | | Contingency 5% | \$22,033 | \$175 | \$102,565 | \$342 | \$98,725 | \$93 | | | Total Project Costs | \$462,683 | \$3,672 | \$2,153,865 | \$7,180 | \$2,073,225 | \$1,956 | | The CHPP estimated net power costs for each of the three sample CHP systems based on three separate cases: - Case 1 assumes that the WWTF previously used digester gas for all thermal requirements, and that there was no purchased fuel used at the site. In this case, the CHP system replaces the thermal load with recovered heat from the prime mover. As previously mentioned, the fuel cell does not produce enough waste heat after generation of electricity, so this unit must be sized appropriately to allow some of the digester gas to fuel a supplemental boiler to provide the necessary make-up heat. - Case 2 assumes that the WWTF previously used digester gas in a boiler for digester heat loads and purchased natural gas for other facility needs. In this case, the excess thermal energy produced by the CHP system (beyond what's required for the digester heat load) displaces natural gas purchased for other facility needs such as space heating. - Case 3 assumes that the WWTF previously did not use digester gas and purchased natural gas for both digester heat loads and other facility needs. In this case, the thermal energy produced by the CHP system displaces natural gas purchased for all of the facility's thermal needs including the digester heat load. Table 9 presents the net power cost estimates for each CHP system. The capital recovery costs are estimated for municipal facilities. Municipal facilities are assumed to have a cost of capital (municipal bonds) of 5 percent and a capital repayment horizon of 20 years. In cases where it is assumed that natural gas is being replaced, the CHPP assumes a natural gas price of \$7.00/MMBtu. In these cases, a thermal credit is incorporated into the net power costs to account for the avoided fuel costs. The fuel savings and the digester heat requirements assume that the necessary thermal energy would have been produced from an 80 percent efficient boiler. Table 9: Net Power Cost Estimates for Three CHP Systems at Wastewater Treatment Facilities
 | CHP System Type | | | | | | |--|-------------------------------|-----------------------------|--|--|--|--| | Cost Element | 126 kW (net)
Microturbine | 300 kW Fuel Cell | 1,060 kW Internal
Combustion Engine | | | | | Maintenance (\$/kWh) | \$0.022 | \$0.030 | \$0.018 | | | | | Case 1: CHP thermal replaces bioga | as-fueled boiler for digester | heating and other local use | <u>*</u> | | | | | Capital Recovery (\$/kWh) | \$0.035 | \$0.069 | \$0.019 | | | | | Unit Power Cost (\$/kWh) | \$0.057 | \$0.099 | \$0.037 | | | | | Case 2: Excess thermal energy (abo | ve digester needs) replaces | natural gas elsewhere on si | ite** | | | | | Digester Heat Needed (Btu/kWh) | 2,979 | 1,840 | 2,219 | | | | | Natural Gas Displaced (Btu/kWh) | 1,006 | (640) | 1,953 | | | | | Thermal Credit (\$/kWh) | \$0.009 | No Excess | \$0.017 | | | | | Net Unit Power Cost (\$/kWh) | \$0.049 | \$0.099 | \$0.020 | | | | | Case 3: 100 percent natural gas replacement with CHP thermal energy*** | | | | | | | | Natural Gas Displaced (Btu/kWh) | 4,980 | 1,500 | 5,216 | | | | | Thermal Credit (\$/kWh) | \$0.035 | \$0.011 | \$0.037 | | | | | Net Unit Power Cost (\$/kWh) | \$0.023 | \$0.089 | \$0.000 | | | | ^{*}Assumes: Municipal Capital Recovery Factor of 8.0 percent (5 percent interest rate, 20 years); 95 percent capacity factor. A facility manager can easily compare the net costs presented in Table 9 to the WWTF's current cost of purchased power to get a quick estimate of whether a CHP system might be cost-effective. If a WWTF purchases power for less than the net power cost, a CHP system may not be cost-effective. However, each WWTF needs to perform its own cost-effectiveness analysis to determine the economic feasibility of investing in a CHP system at their particular facility with site-specific digester, heating, and electric loads. A system-specific level 1 feasibility analysis will uncover additional costs and value streams that are not captured in this basic cost-effectiveness analysis. ### 6.0 Wastewater Treatment Biogas as Renewable Energy The use of biogas from anaerobic digestion at WWTFs is often eligible for renewable fuel credits and clean energy funding. For example, biogas-fueled electricity generation qualifies as a renewable energy source in each state with a renewable portfolio standard (i.e., 22 states and the District of Columbia as of October 2006). National voluntary renewable energy credit (REC) programs also consider new electricity generation fueled by biogas from WWTFs as eligible sources for RECs. In addition, some states offer financial incentives (e.g., grants, rebates) for the production of clean onsite generation (such as biogas-fueled CHP) that reduces peak period electricity demand. For an up-to-date list of states that provide such incentives, see the Partner Resources section of the CHPP Web site at: www.epa.gov/chp/funding_opps.htm. ^{**}Assumes: Digester fuel requirement as a percent of total gas produced = 28.5 percent (consistent with thermophilic average in Table 5); avoided boiler efficiency of 80 percent; avoided boiler fuel cost of \$7.00/MMBtu. ***Assumes: Avoided boiler efficiency of 80 percent; avoided boiler fuel cost of \$7.00/MMBtu. ### 7.0 Additional Resources **EPA Combined Heat and Power Partnership (CHPP)** – The CHPP is a voluntary program that seeks to reduce the environmental impact of power generation by promoting the use of CHP. The CHPP works closely with energy users, the CHP industry, state and local governments, and other stakeholders to support the development of new projects and promote their energy, environmental, and economic benefits. Web site: www.epa.gov/chp/ The CHPP offers a number of tools and resources that can help a WWTF implement a CHP system. These include: - Description of the CHP project development process, including information on key questions for each stage of the process along with specific tools and resources: www.epa.gov/chp/project_resources/proj_dev_process.htm - The CHP and biomass/biogas funding database with bi-weekly updates of new state and federal incentive opportunities: www.epa.gov/chp/funding opps.htm - The CHP Catalogue of Technologies, which describes performance and cost characteristics of CHP technologies: www.epa.gov/chp/project_resources/catalogue.htm ### 7.1 Organizations The following organizations work closely with the wastewater treatment industry and offer a wealth of knowledge concerning wastewater treatment and the use of anaerobic digestion. **EPA Office of Wastewater Management (OWM)** – The OWM oversees a range of programs contributing to the well-being of the nation's waters and watersheds. Web site: www.epa.gov/owm/ <u>National Association of Clean Water Agencies (NACWA)</u> – NACWA represents the interests of more than 300 public agencies and organizations. NACWA members serve the majority of the sewered population in the United States and collectively treat and reclaim more than 18 billion gallons of wastewater daily. Web site: www.nacwa.org/ <u>Water Environment Federation (WEF)</u> – Founded in 1928, the WEF is a not-for-profit technical and educational organization with members from varied disciplines who work toward the organization's vision of preservation and enhancement of the global water environment. Web site: <u>www.wef.org/Home</u> <u>Water Environment Research Foundation (WERF)</u> – WERF helps improve the water environment and protect human health by providing sound, reliable science and innovative, effective, cost-saving technologies for improved management of water resources. Web site: <u>www.werf.us/</u> <u>Air and Waste Management Association (A&WMA)</u> – A&WMA is a nonprofit, nonpartisan professional organization that provides training, information, and networking opportunities to thousands of environmental professionals in 65 countries. Web site: www.awma.org/ ### 7.2 Articles The following journal article and conference presentation highlight the technologies available for digester gas utilization. Hinrichs, Doug; Jimison, John; Lemar, Paul. (November/December 2005). Using Biogas to Fuel DG and CHP plants. *Platts Power: Business and Technology for the Global Generation Industry*, Vol 49, No. 9, 67-70. Mosteller, Kevin L. (2002). Energy Crisis Impact on Anaerobic Digester Gas Utilization Technology: Fuel Cells, Co-Generation, and Other Options. *South Carolina Environmental Conference*. Retrieved June 20, 2006, from http://sc-ec.org/PDFs/2002SCEC/20-Digester%20Gas.pdf. ### 7.3 Case Studies Following are selected case studies that demonstrate the benefits and operational characteristics of installing CHP systems at a variety of WWTFs. These case studies highlight a variety of technologies and biogas utilization options. • "Waukesha Engine Energizes New Hampshire Water Utility Digesting Sludge for Fuel" – New Hampshire's Water Utility uses its 12 to 18 MGD of wastewater to produce electricity and hot water for the facility with a 365 kW internal combustion engine. The anaerobic digesters at the facility handle approximately 60,000 gallons of sludge per day, and what is left after the digestion process is sold as compost. Web site: https://dresser.com/internet/businessunits/waukesha/pages/documents/publications/casehistory/nh_water_utility.pdf • "Maintenance Helps *Million Hour* Engines Thrive at Tucson, Arizona Wastewater Cogeneration Plant" – The Ina Road WWTF treats approximately 35 MGD of wastewater. The facility uses six internal combustion engines to generate approximately 2.5 MW of electricity and thermal energy that is used for hot water; chilled water; heating, ventilation, and cooling (HVAC); and to run the anaerobic digesters. By utilizing biogas, the facility pays no more than \$0.05/kWh, which compares very favorably with the local average of \$0.08 to \$0.11/kWh. Web site: $www.grove. it/internet/business units/waukesha/pages/documents/publications/case history/tucsonwater_utility.pdf$ - "King County (Washington) Fuel Cell Demonstration Project" In 2003, King County's South WWTF installed a 1 MW molten carbonate fuel cell (MCFC) demonstration project that generates electricity and thermal energy for onsite needs. Web site: www.fce.com/downloads/king_county_brochure_03.pdf - "Essex Junction WWTF (Vermont): 60 kW CHP Application" The Essex Junction WWTF uses two 30 kW microturbines to generate electricity and thermal energy. The CHP system's operational efficiency is 80 percent and produces annual energy savings of 412,000 kWh (36 percent of the facility's electricity demand). The project was installed in 2003 and has an estimated payback of seven years. ### Web site: http://www.northeastchp.org/uploads/Essex%20Junction%20Project%20Profile.pdf • "Albert Lea WWTF (Minnesota): 120 kW CHP Application" – The Albert Lea WWTF uses four 30 kW microturbines to generate 120 kW of electricity and 28 MMBtus of thermal energy per year, which is used for space heating and to heat the facility's anaerobic digesters. The CHP system was installed in 2003 and has an estimated payback of four to six years. Web site: www.chpcentermw.org/pdfs/Project_Profile_Albert_Lea_Wastewater_Treatment_Center.pdf • "Columbia Boulevard Wastewater Treatment Plant (Portland, Oregon): 320 kW Fuel Cell and Microturbine Power Plants" – The Columbia Boulevard WWTF uses a 200 kW CHP system to produce electricity and thermal energy for the facility. A primary motivation for the CHP system was to provide back-up power for the facility after it experienced several extended power outages
during the mid-1990s. The CHP system was financed by tax dollars, as well as multiple national, state, and utility grants. Web site: www.chpcenternw.org/NwChpDocs/ColumbiaBlvdWastewaterCaseStudyFinal.pdf # Appendix A: Full List of U.S. Wastewater Treatment Facilities (> 5 MGD) with at Least One Anaerobic Digester Notes: The potential electric capacity calculation assumes that 100 kW of capacity is produced for every 4.5 MGD of influent flow. The plant data comes from the 2004 CWNS. Several limitations exist when using the CWNS data. First, the data are voluntarily reported. As such, the following tables might not include all WWTFs in the United States with influent flow rates greater than 5 MGD. Second, although facilities report if they have anaerobic digesters, the CWNS does not indicate how many digesters are in operation at a facility, or how facilities use the produced biogas. Third, the data contained in the 2004 CWNS are two years old, and therefore might not reflect the current state of operations for each plant. The following tables present an estimate of the <u>potential</u> electric capacity from CHP utilization at each facility based off the CHPP analysis. Each WWTF considering CHP will need to perform its own site-specific feasibility analysis to determine the true potential biogas generation rates; methods to compress, clean, and dry the biogas before combustion; and the costs and benefits of generating onsite heat and electricity. ### A1: Facilities with no off-gas utilization | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |---------|--------------------------------------|------------|---|----------------------------|---| | ALABAMA | ANNISTON
CHOCCOLOC
CO WWTP | CALHOUN | CITY OF
ANNISTON WW
& SB | 9.11 | 202 | | ALABAMA | DECATUR
DRY CREEK
WWTP | MORGAN | CITY OF
DECATUR WW
DEPT | 18.08 | 402 | | ALABAMA | GADSDEN
WEST WWTP | ETOWAH | GADSDEN
WATERWORKS
AND SEWER
BOARD | 9.71 | 216 | | ALABAMA | MOBILE
WILLIAMS
WWTP | MOBILE | MOBILE, BOARD
OF WATER AND
SEWER
COMMISSIONER
S | 20.471 | 455 | | ALABAMA | MONTGOMER
Y CATOMA
CREEK WWTP | MONTGOMERY | MONTGOMERY
WW & SAN SWR
BD | 20.005 | 445 | | ALABAMA | MONTGOMER
Y
ENCONCHATE
WWTP | MONTGOMERY | MONTGOMERY
WW&SAN SWR
BD | 10.591 | 235 | | ALABAMA | TUSCALOOSA
WWTP | TUSCALOOSA | TUSCALOOSA
WW & SWR BD | 16.5 | 367 | | ALABAMA | ALBERTVILLE
EASTSIDE
WWTP | MARSHALL | ALBERTVILLE,
CITY OF | 6.04 | 134 | | ARIZONA | PHOENIX
91ST AVE
WWTP | MARICOPA | CITY OF
PHOENIX | 124 | 2756 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |------------|--|------------------|--|----------------------------|---| | ARIZONA | ROGER RD
TRTMNT PLNT | PIMA | PIMA COUNTY
WWMD | 29.6 | 658 | | ARIZONA | YUMA
FIGUEROA
WPCF | YUMA | CITY OF YUMA
PUBLIC WORKS
DEPT | 8.5 | 189 | | ARKANSAS | LITTLE ROCK
FOURCHE
CREEK STP | PULASKI | LITTLE ROCK | 13.1 | 291 | | ARKANSAS | SPRINGDALE
STP | WASHINGTON | SPRINGDALE | 12.2 | 271 | | CALIFORNIA | LAGUNA
WASTEWATE
R TREATMENT
PLANT | SONOMA | SANTA ROSA,
CITY OF | 17.5 | 389 | | CALIFORNIA | DUBLIN-SAN
RAMON WWTF | ALAMEDA | DUBLIN SAN
RAMON
SERVICES
DISTRICT | 9.9 | 220 | | CALIFORNIA | SUNNYVALE
WWTF | SANTA CLARA | SUNNYVALE,
CITY OF | 16.22 | 360 | | CALIFORNIA | CENTRAL
CONTRA
COSTA WWTF | CONTRA COSTA | CENTRAL
CONTRA COSTA
SANITARY
DISTRICT | 49.39 | 1098 | | CALIFORNIA | HAYWARD
WPCF | ALAMEDA | HAYWARD, CITY
OF | 13.7 | 304 | | CALIFORNIA | DALY CITY
WWTP | SAN MATEO | DALY CITY, CITY
OF | 6.27 | 139 | | CALIFORNIA | SAN
JOSE/SANTA
CLARA WPCP | SANTA CLARA | SAN JOSE, CITY
OF,
ENVIRONMENTA
L SERVICES
DEPART. | 143.3 | 3184 | | CALIFORNIA | SAN MATEO
WWTF | SAN MATEO | SAN MATEO,
CITY OF | 12.7 | 282 | | CALIFORNIA | SANTA CRUZ
WWTF | SANTA CRUZ | SANTA CRUZ,
CITY OF | 15.32 | 340 | | CALIFORNIA | SANTA
BARBARA
WWTF | SANTA
BARBARA | SANTA
BARBARA, CITY
OF | 8.8 | 196 | | CALIFORNIA | WATSONVILL
E WWTF | SANTA CRUZ | WATSONVILLE,
CITY OF | 7.4 | 164 | | CALIFORNIA | VENTURA
WATER
RECLAMATIO
N FACILITY | VENTURA | VENTURA, CITY
OF | 10 | 222 | | CALIFORNIA | HILL CANYON
WWTP | VENTURA | THOUSAND
OAKS, CITY OF | 10.3 | 229 | | CALIFORNIA | VALENCIA
WRP | LOS ANGELES | COUNTY
SANITATION
DISTRICTS OF
LOS ANGELES
COUNTY | 14 | 311 | | CALIFORNIA | TERMINAL
ISLAND WWTP | LOS ANGELES | CITY OF LOS
ANGELES,
BUREAU OF
SANITATION | 16 | 356 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential Electric Capacity (kW) | |------------|--|-------------------|--|----------------------------|----------------------------------| | CALIFORNIA | SACRAMENTO
REGIONAL
WWTF | SACRAMENTO | SACRAMENTO
COUNTY
REGIONAL
SANITATION
DISTRICT | 165 | 3667 | | CALIFORNIA | BAKERSFIELD
WWTP #2 | KERN | BAKERSFIELD,
CITY OF | 17.3 | 384 | | CALIFORNIA | BAKERSFIELD
WWTP #3 | KERN | BAKERSFIELD,
CITY OF | 11.3 | 251 | | CALIFORNIA | CHICO WPCP | BUTTE | CHICO, CITY OF | 7.5 | 167 | | CALIFORNIA | LODI WPCF | SAN JOAQUIN | LODI, CITY OF | 6.2 | 138 | | CALIFORNIA | MODESTO
WWTF | STANISLAUS | MODESTO, CITY
OF | 27.4 | 609 | | CALIFORNIA | VISALIA
WWTP | TULARE | VISALIA, CITY
OF | 12 | 267 | | CALIFORNIA | YUBA CITY
WRP | SUTTER | YUBA CITY, CITY
OF | 5.5 | 122 | | CALIFORNIA | CLEAR CREEK
WWTF | SHASTA | REDDING, CITY
OF | 7.93 | 176 | | CALIFORNIA | TRACY WWTP | SAN JOAQUIN | TRACY, CITY OF | 7.1 | 158 | | CALIFORNIA | MADERA STP | MADERA | MADERA, CITY
OF | 5.85 | 130 | | CALIFORNIA | DAVIS WWTF | YOLO | DAVIS, CITY OF | 6.5 | 144 | | CALIFORNIA | SOUTH
TAHOE WWTF | EL DORADO | SOUTH TAHOE
PUD | 5 | 111 | | CALIFORNIA | PALM
SPRINGS
WWRF | RIVERSIDE | PALM SPRINGS,
CITY OF | 8.29 | 184 | | CALIFORNIA | PALM DESERT
WWRF | RIVERSIDE | COACHELLA VLY
CO WTR DIST | 5.38 | 120 | | CALIFORNIA | SAN JACINTO
REGIONAL
WRF | RIVERSIDE | EASTERN
MUNICIPAL
WATER
DISTRICT | 8.72 | 194 | | CALIFORNIA | IEUA
REGIONAL
PLANT NO.1 | SAN
BERNARDINO | INLAND EMPIRE
UTILITIES
AGENCY | 38.8 | 862 | | CALIFORNIA | CORONA
WWTF #1 | RIVERSIDE | CORONA, CITY
OF | 9.007 | 200 | | CALIFORNIA | RIALTO WWTP | SAN
BERNARDINO | RIALTO, CITY OF | 7.4 | 164 | | CALIFORNIA | SAN
CLEMENTE
WRP | ORANGE | SAN CLEMENTE,
CITY OF | 5 | 111 | | COLORADO | PUEBLO
WWTP | PUEBLO | PUEBLO, CITY
OF | 16.8 | 373 | | COLORADO | BOULDER
75TH STREET
WWTP | BOULDER | BOULDER, CITY
OF | 5.86 | 130 | | COLORADO | FORT
COLLINS
DRAKE WW
RECLAMAT
FAC | LARIMER | FORT COLLINS,
CITY OF | 13 | 289 | | COLORADO | GREELEY
WWTP | WELD | GREELEY W & S
DEPT | 8.42 | 187 | | COLORADO | LONGMONT
WWTP | BOULDER | LONGMONT,
CITY OF | 7.39 | 164 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential Electric Capacity (kW) | |-------------|---------------------------------------|--------------|---|----------------------------|----------------------------------| | COLORADO | LITTLETON/EN
GLEWOOD
WWTP | ARAPAHOE | LITTLETON/ENG
LEWOOD | 32.67 | 726 | | COLORADO | BOULDER
CREEK | BOULDER | BOULDER, CITY
OF | 16 | 356 | | CONNECTICUT | DANBURY
WPCF | FAIRFIELD | DANBURY CITY
OF | 6.37 | 142 | | CONNECTICUT | EAST
HARTFORD
WPCF | HARTFORD | METROPOLITAN
DISTRICT | 5.963 | 133 | | CONNECTICUT | TORRINGTON
MAIN WPCF | LITCHFIELD | TORRINGTON,
CITY OF | 5.28 | 117 | | DELAWARE | WILMINGTON
STP | NEW CASTLE | WILMINGTON
CITY COUNCIL | 71.23 | 1583 | | FLORIDA | BUCKMAN
STREET STP | DUVAL | JEA | 37.96 | 844 | | FLORIDA | SOUTH WWTF | ORANGE | ORANGE CO FL
SEW & W DEPT | 14.98 | 333 | | FLORIDA | ALTAMONTE
SPGS MAIN
STP | SEMINOLE | ALTAMONTE
SPRINGS, CITY | 5.46 | 121 | | FLORIDA | MAIN STREET
PLANT | ESCAMBIA | ECUA | 14.63 | 325 | | FLORIDA | THOMAS P.
SMITH WTP | LEON | TALLAHASSEE,
CITY OF | 13.39 | 298 | | FLORIDA | HOWARD F
CURREN
AWTP | HILLSBOROUGH | TAMPA | 50.5 | 1122 | | FLORIDA | PLANT CITY
STP | HILLSBOROUGH | PLANT CITY,
CITY OF | 5.3 | 118 | | FLORIDA | LARGO STP | PINELLAS | LARGO, TOWN
OF | 13 | 289 | | FLORIDA | MARSHALL
STREET
AWTTP | PINELLAS | CLEARWATER,
CITY OF | 6.34 | 141 | | FLORIDA | ST
PETERSBURG
SOUTHWEST
WWTP | PINELLAS | ST
PETERSBURG,
CITY OF | 10.1 | 224 | | FLORIDA | ST
PETERSBURG
NORTHEAST
WWTP | PINELLAS | ST
PETERSBURG,
CITY OF | 11.5 | 256 | | FLORIDA | ST
PETERSBURG
NORTHWEST
WWTP | PINELLAS | ST
PETERSBURG,
CITY OF | 11.04 | 245 | | FLORIDA | ALBERT
WHITTED
WWTP | PINELLAS | ST
PETERSBURG,
CITY OF | 7.9 | 176 | | FLORIDA | LOXAHATCHE
E R. REG STP | PALM BEACH | LOXAHATCHEE
RIVER
ENVIRONMENTA
L CONTROL
DISTRICT | 7.5 | 167 | | FLORIDA | DAYTONA
BEACH REG.
STP | VOLUSIA | DAYTONA
BEACH, CITY OF | 6.05 | 134 | | FLORIDA | BETHUNE
POINT WWTP | VOLUSIA | DAYTONA
BEACH, CITY OF | 8.46 | 188 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |---------
-----------------------------------|-----------|---|----------------------------|---| | GEORGIA | MACON
POPLAR
STREET
WPCP | BIBB | MACON-BIBB
CO. WSA | 16.75 | 372 | | GEORGIA | INTRENCHME
NT CREEK
WWTP | DEKALB | ATLANTA PUBLIC WORKS DEPT | 14.57 | 324 | | GEORGIA | SOUTH RIVER
WWTP | FULTON | ATLANTA PUBLIC WORKS DEPT | 32.26 | 717 | | GEORGIA | R M CLAYTON
WPCP | FULTON | ATLANTA PUBLIC WORKS DEPT | 87.52 | 1945 | | GEORGIA | JOHNS
CREEK WPCP | FULTON | FULTON CO BD
OF
COMMISSIONER
S | 7.05 | 157 | | GEORGIA | FULTON CO-
CAMP CREEK
WPCP | FULTON | FULTON CO BD
OF
COMMISSIONER
S | 10.07 | 224 | | GEORGIA | COBB
COUNTY
SUTTON
WPCP | COBB | COBB COUNTY
WATER &
SEWER | 31.84 | 708 | | GEORGIA | COBB
NOONDAY
CREEK WPCP | COBB | COBB COUNTY
WATER AND
SEWER | 8.75 | 194 | | GEORGIA | GWINNETT
CROOKED
CREEK STP | GWINNETT | GWINNETT
COUNTY WATER
POL | 14.13 | 314 | | GEORGIA | SOUTH
COLUMBUS
WPCP | MUSCOGEE | COLUMBUS BD
OF WAT COMM. | 30 | 667 | | GEORGIA | ALBANY
JOSHUA
ROAD WPCP | DOUGHERTY | ALBANY, CITY
OF | 19.09 | 424 | | GEORGIA | AUGUSTA
WWTP | RICHMOND | AUGUSTA, CITY
COUNCIL OF | 30.64 | 681 | | GEORGIA | ATHENS
NORTH
OCONEE
WPCP | CLARKE | ATHENS, CITY
OF | 7.9 | 176 | | GEORGIA | GAINESVILLE
FLAT CREEK
WPCP | HALL | GAINESVILLE,
CITY OF | 5.68 | 126 | | GEORGIA | MILLEDGEVIL
LE WPCP | BALDWIN | MILLEDGEVILLE,
CITY OF | 5.9 | 131 | | GEORGIA | ROME WPCP | FLOYD | ROME WATER
AND SEWER
DEPT | 9.68 | 215 | | GEORGIA | THOMASVILLE WPCP | THOMAS | THOMASVILLE,
CITY OF | 5.29 | 118 | | HAWAII | SAND ISLAND
WWTF | HONOLULU | HONOLULU,
CITY AND CO | 77.6 | 1724 | | HAWAII | KAILUA WWTF | HONOLULU | HONOLULU,
CITY & CO | 6.93 | 154 | | HAWAII | HONOULIULI
WWTF | HONOLULU | HONOLULU,
CITY & CO | 24.6 | 547 | | IDAHO | POCATELLO
STP | BANNOCK | POCATELLO,
CITY OF | 6.34 | 141 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------|--|-------------|--|----------------------------|---| | IDAHO | TWIN FALLS
STP | TWIN FALLS | TWIN FALLS,
CITY OF | 7.95 | 177 | | IDAHO | BOISE, CITY
OF- LANDER
STREET | ADA | BOISE, CITY OF | 14.6 | 324 | | IDAHO | BOISE, CITY
OFWEST
BOISE | ADA | BOISE, CITY OF | 11.5 | 256 | | IDAHO | IDAHO FALLS
STP | BONNEVILLE | IDAHO FALLS,
CITY OF | 10.5 | 233 | | IDAHO | NAMPA STP | CANYON | NAMPA, CITY OF | 9.89 | 220 | | IDAHO | CALDWELL
SEWAGE TRT
FACIL | CANYON | CALDWELL, CITY
OF | 7.31 | 162 | | ILLINOIS | QUINCY STP | ADAMS | QUINCY, CITY
OF | 7 | 156 | | ILLINOIS | KANKAKEE
RIVER
METROPOLIT
AN AGENCY | KANKAKEE | KANKAKEE
RIVER
METROPOLITAN
AGENCY (KRMA) | 14.68 | 326 | | ILLINOIS | FREEPORT
STP | STEPHENSON | FREEPORT
WATER &
SEWER CO | 5.1 | 113 | | ILLINOIS | UCSD-
NORTHEAST
STP | CHAMPAIGN | URBANA &
CHAMPAIGN
S.D. | 10 | 222 | | ILLINOIS | FOX LAKE NW
REGIONAL
WRF | LAKE | FOX LAKE,
VILLAGE OF | 6.4 | 142 | | ILLINOIS | JOLIET -
EASTSIDE
STP | WILL | JOLIET, CITY OF | 16 | 356 | | ILLINOIS | JOLIET-
WESTSIDE
STP | WILL | JOLIET, CITY OF | 5.9 | 131 | | ILLINOIS | ELMHURST
SEWAGE
TREATMENT | DUPAGE | ELMHURST,
CITY OF | 10.4 | 231 | | ILLINOIS | WHEATON SD
SEWAGE TR
PLNT | DUPAGE | WHEATON
SANITARY
DISTRICT | 7 | 156 | | ILLINOIS | DEKALB MAIN
PLANT | DEKALB | DEKALB
SANITARY
DISTRICT | 6 | 133 | | ILLINOIS | BELLEVILLE
STP #1 | ST. CLAIR | BELLEVILLE,
CITY OF | 5.95 | 132 | | ILLINOIS | ALTON S T P | MADISON | ALTON, CITY OF | 8.42 | 187 | | ILLINOIS | ROCK ISLAND
MAIN STP | ROCK ISLAND | ROCK ISLAND,
CITY OF | 8 | 178 | | ILLINOIS | SPRINGFIELD
SD E SUG
CRK | SANGAMON | SPRINGFIELD
SANITARY DIST | 9.27 | 206 | | ILLINOIS | DECATUR SD
STP | MACON | DECATUR SAN.
DIST. | 38.4 | 853 | | ILLINOIS | PEORIA STP | PEORIA | GREATER
PEORIA
SANITARY D | 27 | 600 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------|-----------------------------------|-------------|----------------------------------|----------------------------|---| | ILLINOIS | BLOOMINGTO
N-NORMAL
STP | MCLEAN | BLOOMINGTON-
NORMAL SD | 16 | 356 | | ILLINOIS | THORN
CREEK BASIN.
S.D. STP | соок | THORN CREEK
BASIN S.D. | 13 | 289 | | ILLINOIS | JACKSONVILL
E STP | MORGAN | JACKSONVILLE,
CITY OF | 5.95 | 132 | | ILLINOIS | GALESBURG
STP | KNOX | GALESBURG
SANITARY DIST | 10 | 222 | | ILLINOIS | MCELWAIN
REG STP | соок | HINSDALE
SANITARY DIST | 10.48 | 233 | | ILLINOIS | GLENBARD
WW AUTH | DUPAGE | GLEN ELLYN,
VILLAGE OF | 10 | 222 | | ILLINOIS | DOWNERS
GROVE STP | DUPAGE | DOWNERS
GROVE SAN
DIST | 8 | 178 | | ILLINOIS | STICKNEY
WRD | соок | CHICAGO
MWRDGC | 812 | 18044 | | ILLINOIS | HANOVER
PARK WRP | соок | CHICAGO
MWRDGC | 9 | 200 | | ILLINOIS | JOHN E EGAN
WRP | соок | CHICAGO
MWRDGC | 27 | 600 | | ILLINOIS | CALUMET
WRP | COOK | CHICAGO
MWRDGC | 232.58 | 5168 | | INDIANA | SOUTHPORT
WWTP | MARION | INDIANAPOLIS
SAN. DIST. | 125 | 2778 | | INDIANA | SPEEDWAY,
TOWN OF | MARION | SPEEDWAY,
TOWN OF | 7.5 | 167 | | INDIANA | EAST
CHICAGO STP | LAKE | EAST CHICAGO,
CITY OF | 15 | 333 | | INDIANA | GARY
SANITARY
DISTRICT | LAKE | GARY SANITARY
DISTRICT | 41.32 | 918 | | INDIANA | HAMMOND
WWTP | LAKE | HAMMOND SD | 48 | 1067 | | INDIANA | VALPARAISO
STP | PORTER | VALPARAISO,
CITY OF | 6 | 133 | | INDIANA | TERRE HAUTE
WWTP | VIGO | TERRE HAUTE
S.D. | 13.34 | 296 | | INDIANA | SOUTH BEND
WWTP | ST. JOSEPH | SOUTH BEND
BOARD OF
PUBLIC | 37.7 | 838 | | INDIANA | W LAFAYETTE
SEWAGE
WRKS | TIPPECANOE | WEST
LAFAYETTE,
CITY OF | 9 | 200 | | INDIANA | MOSS ISLAND
ROAD PLANT | MADISON | ANDERSON,
CITY OF | 20.53 | 456 | | INDIANA | EASTSIDE
WWTP | VANDERBURGH | EVANSVILLE,
CITY OF | 18 | 400 | | INDIANA | EVANSVILLE
WESTSIDE
WWTP | VANDERBURGH | EVANSVILLE,
CITY OF | 20.6 | 458 | | INDIANA | JEFFERSONVI
LLE STP | CLARK | JEFFERSONVILL
E, CITY OF | 5.2 | 116 | | INDIANA | COLUMBUS
WWTP | BARTHOLOMEW | COLUMBUS,
CITY OF | 7.94 | 176 | | INDIANA | CONNERSVILL
E WWTP | FAYETTE | CONNERSVILLE,
CITY OF | 6.58 | 146 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------|---|-------------------|---|----------------------------|---| | INDIANA | ELKHART
WWTP | ELKHART | ELKHART, CITY
OF | 16.31 | 362 | | INDIANA | GOSHEN
WWTP | ELKHART | GOSHEN, CITY
OF | 12.5 | 278 | | INDIANA | KOKOMO MUN
WWTP | HOWARD | KOKOMO, CITY
OF | 19.5 | 433 | | INDIANA | LAPORTE
WWTP | LA PORTE | LAPORTE, CITY
OF | 5.06 | 112 | | INDIANA | LOGANSPORT
WWTP | CASS | LOGANSPORT,
CITY OF | 6.76 | 150 | | INDIANA | MICHIGAN
CITY STP | LA PORTE | MICHIGAN CITY | 12 | 267 | | INDIANA | NEW CASTLE
STP | HENRY | NEW CASTLE,
CITY OF | 8 | 178 | | IOWA | AMES WWTP | STORY | AMES, CITY OF | 5.89 | 131 | | IOWA | COUNCIL
BLUFFS
WWTP | POTTAWATTAMI
E | COUNCIL
BLUFFS, CITY
OF | 6.71 | 149 | | IOWA | DAVENPORT
WWTP | SCOTT | DAVENPORT,
CITY OF | 19.02 | 423 | | IOWA | DES MOINES
MAIN WWTP | POLK | DES MOINES
WASTEWATER
RECLAMATION
FACILITY | 33.35 | 741 | | IOWA | IOWA CITY
NORTH WWTP | JOHNSON | IOWA CITY, CITY
OF | 5.91 | 131 | | IOWA | OTTUMWA
WWTP | WAPELLO | OTTUMWA, CITY
OF | 5.36 | 119 | | IOWA | SIOUX CITY
WWTP | WOODBURY | SIOUX CITY,
CITY OF | 18.29 | 406 | | IOWA | WATERLOO
WWTP | BLACK HAWK | WATERLOO,
CITY OF | 16.91 | 376 | | KANSAS | HUTCHINSON
WWTP | RENO | HUTCHINSON,
CITY OF | 5.506 | 122 | | KANSAS | WICHITA
WWTP #1 + #2 | SEDGWICK | WICHITA, CITY
OF | 40.617 | 903 | | KANSAS | KCK WWTP
#1-KP WWTP | WYANDOTTE | KANSAS CITY,
CITY OF | 23.1 | 513 | | KANSAS | LAWRENCE
WWTP | DOUGLAS | LAWRENCE,
CITY OF | 7.77 | 173 | | KANSAS | PITTSBURG
WWTP | CRAWFORD | PITTSBURG,
CITY OF | 5.423 | 121 | | KANSAS | TOPEKA
OAKLAND
WWTP | SHAWNEE | TOPEKA, CITY
OF | 10.23 | 227 | | KANSAS | JO CO
MISSION
TOWNSHIP
MSD #1 WWTP | JOHNSON | JOHNSON CO
UNIFIED SD | 7.1 | 158 | | KANSAS | JO CO TOM
CRK WWTP | JOHNSON | JOHNSON CO.
UNIFIED SD | 5 | 111 | | KANSAS | JO CO
TURKEY
CREEK MSD
#1 WWTP | JOHNSON | JOHNSON CO
UNIFIED SD | 6.86 | 152 | | KENTUCKY | LFUCG TOWN
BRANCH STP | FAYETTE | LEXINGTON-
FAYETTE
URBAN COUNTY
GOVERNMENT | 19.85 | 441 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |---------------|---|--------------------|--|----------------------------|---| | KENTUCKY | LFUCG W
HICKMAN STP | JESSAMINE | LEX-FAYETTE
UCG | 17.56 | 390 | | KENTUCKY | RWRA
OWENSBORO
WEST & CS | DAVIESS | REG WATER
RESOURCE
AGENCY | 8.146 | 181 | | KENTUCKY | MSD - MORRIS
FORMAN STP
& CSO | JEFFERSON | LOU-JEFF CO
MSD | 60.36 | 1341 | | KENTUCKY | ELIZABETHTO
WN | HARDIN | ELIZABETHTOW
N, CITY OF | 5.21 | 116 | | LOUISIANA | HOUMA S
REG TRTMT
PLT | TERREBONNE | TERREBONNE PARISH CONSOLIDATAE D GOVERNMENT | 8 | 178 | | LOUISIANA |
KENNER TF
STP #1 | JEFFERSON | KENNER, CITY
OF | 5.3 | 118 | | LOUISIANA | LAKE
CHARLES
PLANT A | CALCASIEU | LAKE CHARLES,
CITY OF | 5 | 111 | | LOUISIANA | MONROE
WATER POLL
CONTROL
CENTER | OUACHITA | MONROE, CITY
OF | 17 | 378 | | LOUISIANA | HARVEY
PLANT | JEFFERSON | JEFF PARISH DD
& S | 7.5 | 167 | | LOUISIANA | BRIDGE CITY
OLD PLANT | JEFFERSON | JEFF PARISH DD
& S | 6 | 133 | | LOUISIANA | MARRERO
PLANT | JEFFERSON | JEFF PARISH DD
& S | 6.4 | 142 | | LOUISIANA | MUNSTER
BLVD PLANT | ST. BERNARD | ST BERNARD
PARISH
GOVERNMENT | 6.5 | 144 | | MARYLAND | COX CREEK
WWTP | ANNE ARUNDEL | ANNE ARUNDEL
COUNTY DPW | 11.11 | 247 | | MARYLAND | ANNAPOLIS
CITY WWTP | ANNE ARUNDEL | ANNE ARUNDEL
COUNTY DPW | 6.609 | 147 | | MARYLAND | SOD RUN
WWTP | HARFORD | HARFORD
COUNTY DPW | 11.476 | 255 | | MARYLAND | WESTERN
BRANCH
WWTP | PRINCE
GEORGE'S | WASHINGTON
SUBURBAN
SANITARY
COMMISSION | 17.679 | 393 | | MARYLAND | CUMBERLAND
WWTP | ALLEGANY | CUMBERLAND,
MAYOR OF | 10.886 | 242 | | MARYLAND | MATTAWOMA
N WWTP | CHARLES | CHARLES CO.
PLANNING DEPT | 7.675 | 171 | | MARYLAND | FREDERICK
CITY WWTP | FREDERICK | FREDERICK,
CITY OF | 6.5 | 144 | | MARYLAND | HAGERSTOW
N WPCF | WASHINGTON | HAGERSTOWN,
CITY OF | 8.149 | 181 | | MARYLAND | OCEAN CITY
WWTP | WORCESTER | OCEAN CITY
WASTEWATER
DEP | 10.783 | 240 | | MARYLAND | SENECA
CREEK WWTP | MONTGOMERY | WASH SUB SAN
COM | 6.392 | 142 | | MASSACHUSETTS | LYNN
REGIONAL
WPCF | ESSEX | LYNN, CITY OF | 25.8 | 573 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |---------------|-----------------------------------|-------------------|---------------------------------|----------------------------|---| | MASSACHUSETTS | PITTSFIELD
WWTF | BERKSHIRE | PITTSFIELD,
CITY OF | 10.57 | 235 | | MASSACHUSETTS | LEOMINSTER
WWTP | WORCESTER | LEOMINSTER
DPW | 6.03 | 134 | | MASSACHUSETTS | MWRA DEER
ISLAND WWTP | SUFFOLK | MWRA | 348 | 7733 | | MICHIGAN | GRAND
RAPIDS
WWTP | KENT | GRAND RAPIDS,
CITY OF | 54.6 | 1213 | | MICHIGAN | WYOMING
WWTP | KENT | WYOMING
WWTP | 14 | 311 | | MICHIGAN | FLINT WPCF | GENESEE | FLINT, CITY OF | 43.3 | 962 | | MICHIGAN | MARYSVILLE
STP | ST. CLAIR | MARYSVILLE,
CITY OF | 6.14 | 136 | | MICHIGAN | WARREN
WWTP | MACOMB | WARREN, CITY
OF | 30 | 667 | | MICHIGAN | PONTIAC STP | OAKLAND | PONTIAC DEPT
OF PUB WKS | 8 | 178 | | MICHIGAN | DETROIT STP | WAYNE | DETROIT BOARD
OF WATER CO | 660.5 | 14678 | | MICHIGAN | ANN ARBOR
WWTP | WASHTENAW | ANN ARBOR
DEPT OF PUB
WKS | 15.14 | 336 | | MICHIGAN | YCUA WWTP | WASHTENAW | WASHTENAW
COUNTY DPW | 8.27 | 184 | | MICHIGAN | MONROE
METRO WWTP | MONROE | MONROE
METROPOLITAN
WASTE | 15.794 | 351 | | MICHIGAN | SAGINAW STP | SAGINAW | SAGINAW DPW
PU | 8.3 | 184 | | MICHIGAN | JACKSON
WWTP | JACKSON | JACKSON, CITY
OF | 13.43 | 298 | | MICHIGAN | BENTON
HARBOR-ST
JOSEPH | BERRIEN | BENTON
HARBOR ST
JOSEPH J | 7.21 | 160 | | MICHIGAN | MIDLAND
WWTP | MIDLAND | MIDLAND , CITY
OF | 8.5 | 189 | | MICHIGAN | HURON
VALLEY
WWTP-SOUTH | WAYNE | HURON VALLEY | 14 | 311 | | MINNESOTA | AUSTIN WWT
FACILITY | MOWER | AUSTIN, CITY OF | 7.875 | 175 | | MINNESOTA | GRAND
RAPIDS STP | ITASCA | GRAND RAPIDS,
CITY OF | 10.31 | 229 | | MISSISSIPPI | HCW&SWMA -
WEST BILOXI
POTW | HARRISON | HARR. CO.
WWMD | 8.83 | 196 | | MISSISSIPPI | HCW&SWMA,
GULFPORT
POTW | HARRISON | HARR. CO.
WWMD | 10.22 | 227 | | MISSISSIPPI | NATCHEZ
POTW | ADAMS | NATCHEZ,CITY
OF, WORKS, C | 5 | 111 | | MISSOURI | CAPE
GIRARDEAU
WWTP | CAPE
GIRARDEAU | CAPE
GIRARDEAU,
CITY OF | 6.4 | 142 | | MISSOURI | HINKSON-
PERCHE
PLANT | BOONE | COLUMBIA, CITY
OF | 14.5 | 322 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |------------|--|-------------|--|----------------------------|---| | MISSOURI | ROCK CREEK
WWTP | JACKSON | INDEPENDENCE,
CITY OF | 8.2 | 182 | | MISSOURI | TURKEY
CREEK WWTP | JASPER | JOPLIN, CITY OF | 8.2 | 182 | | MISSOURI | K.C. BLUE
RIVER STP | JACKSON | KANSAS CITY,
CITY OF | 75 | 1667 | | MISSOURI | K. C. WEST
SIDE WWTP | JACKSON | KANSAS CITY,
CITY OF | 19.31 | 429 | | MISSOURI | ST JOSEPH
WWTP | BUCHANAN | ST JOSEPH,
CITY OF | 19 | 422 | | MISSOURI | COLDWATER
CREEK WWTP | ST. LOUIS | ST LOUIS MSD | 27.59 | 613 | | MISSOURI | MISSOURI
RIVER WWTP | ST. LOUIS | ST LOUIS MSD | 24 | 533 | | MISSOURI | SPRINGFIELD
SW WWTP | GREENE | SPRINGFIELD,
CITY OF | 35 | 778 | | MISSOURI | SPRINGFIELD
NW WWTP | GREENE | SPRINGFIELD,
CITY OF | 5.35 | 119 | | MONTANA | MISSOULA
STP | MISSOULA | MISSOULA, CITY
OF | 7.52 | 167 | | MONTANA | BOZEMAN
WWTP | GALLATIN | BOZEMAN, CITY
OF | 5 | 111 | | MONTANA | GREAT FALLS
STP | CASCADE | GREAT FALLS,
CITY OF | 9.9 | 220 | | MONTANA | BILLINGS
WWTP | YELLOWSTONE | BILLINGS, CITY
OF | 15.8 | 351 | | NEBRASKA | THERESA
STREET STP | LANCASTER | LINCOLN, CITY
OF | 20.2 | 449 | | NEBRASKA | NORTHEAST
STP | LANCASTER | LINCOLN, CITY
OF | 6.5 | 144 | | NEVADA | LAS VEGAS
WWTF | CLARK | LAS VEGAS,
CITY OF | 62 | 1378 | | NEW JERSEY | BERGEN
CNTY
UTILITIES
AUTHORITY | BERGEN | BERGEN
COUNTY
UTILITIES
AUTHORITY | 75.19 | 1671 | | NEW JERSEY | JOINT
MEETING OF
ESSEX &
UNION | UNION | J M OF ESSEX & UNION | 85 | 1889 | | NEW JERSEY | LINDEN
ROSELLE SA
STP | UNION | LINDEN
ROSELLE SA | 12 | 267 | | NEW JERSEY | MOLITOR WATER POLLUTION CONTROL FAC | MORRIS | MADISON
CHATHAM JT
MTG | 7.58 | 168 | | NEW JERSEY | RAHWAY
VALLEY SEW.
AUTHORITY-
STP | MIDDLESEX | RAHWAY
VALLEY SA | 31.85 | 708 | | NEW JERSEY | NORTH
HUDSON S.A.
- ADAM ST.
WTP | HUDSON | NORTH HUDSON
SA | 13.053 | 290 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential Electric Capacity (kW) | |------------|--|------------|--|----------------------------|----------------------------------| | NEW JERSEY | NORTH
BERGEN MUA
- CENTRAL
STP | HUDSON | NORTH
BERGEN, TWP.
OF | 7.68 | 171 | | NEW JERSEY | PARSIPPANY-
TROY HILLS
STP | MORRIS | PAR-TROY HILLS
TOWNSHIP | 12.66 | 281 | | NEW JERSEY | MOUNTAIN
VIEW STP | PASSAIC | WAYNE
TOWNSHIP | 6.9 | 153 | | NEW JERSEY | MIDDLESEX
CNTY UA | MIDDLESEX | MIDDLESEX
COUNTY UA | 177.633 | 3947 | | NEW JERSEY | MIDDLETOWN
SA (TOMSA) | MONMOUTH | MIDDLETOWN
TOWNSHIP S.A. | 8.04 | 179 | | NEW JERSEY | SOUTHERN
WPC FAC -
OCUA | OCEAN | OCEAN COUNTY
UA | 7 | 156 | | NEW JERSEY | OCEAN TWP.
SEWERAGE
AUTHORITY | MONMOUTH | TOWNSHIP OF
OCEAN
SEWERAGE
AUTHORITY | 5.23 | 116 | | NEW JERSEY | SOUTH
MONMOUTH
REG STP | MONMOUTH | SOUTH
MONMOUTH
RSA | 7.198 | 160 | | NEW JERSEY | NEPTUNE
TWP REG STP | MONMOUTH | TWP OF
NEPTUNE SA | 5.978 | 133 | | NEW JERSEY | ATLANTIC
COUNTY
UTILITIES
AUTH WWTF | ATLANTIC | ATLANTIC CO
UA (CSTL) | 31.333 | 696 | | NEW JERSEY | GLOUCESTER
CNTY UTIL
AUTH | GLOUCESTER | GLOUCESTER
COUNTY
UTILITIES
AUTHORITY | 19 | 422 | | NEW JERSEY | ELSA STP -
EWING-
LAWRENCE
S.A. | MERCER | EWING-
LAWRENCE
SEWERAGE
AUTHORITY | 11.306 | 251 | | NEW JERSEY | TRENTON
SEWER
UTILITY | MERCER | TRENTON, CITY
OF | 20 | 444 | | NEW MEXICO | ALBUQUERQU
E #2 PLANT | BERNALILLO | ALBUQUERQUE,
CITY OF | 47.9 | 1064 | | NEW MEXICO | LAS CRUCES
STP | DONA ANA | LAS CRUCES,
CITY OF | 5.5 | 122 | | NEW YORK | LONG BEACH
WPC PLANT | NASSAU | LONG BEACH
(CITY) DPW | 5.217 | 116 | | NEW YORK | BAY PARK
(NASSAU C)
STP & SD#2 | NASSAU | NASSAU
COUNTY DPW | 53.017 | 1178 | | NEW YORK | CEDAR
CREEK
(NASSAU C)
STP/SD#3 | NASSAU | NASSAU
COUNTY DPW | 57.067 | 1268 | | NEW YORK | ROCKLAND
COUNTY (CO)
SD#1 | ROCKLAND | ROCKLAND
COUNTY SEWER
DISTRICT NO.1 | 21.335 | 474 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------|---|-------------|---|----------------------------|---| | NEW YORK | WESTCHESTE
R (CO)
PEEKSKILL SD
STP | WESTCHESTER | WESTCHESTER
CO DEF | 6.4 | 142 | | NEW YORK | WESTCHESTE
R (CO)PORT
CHESTER SD
STP | WESTCHESTER | WESTCHESTER
CO DEF | 5.25 | 117 | | NEW YORK | WESTCHESTE
R (CO)
YONKERS
JOINT STP | WESTCHESTER | WESTCHESTER
COUNTY DEF | 79.428 | 1765 | | NEW YORK | SCHENECTAD
Y (C) SEWERS
& STP | SCHENECTADY | SCHENECTADY,
CITY OF | 13.325 | 296 | | NEW YORK | GLOVERSVILL
E-
JOHNSTOWN
(C) WWTP | FULTON | GLOVERSVILLE-
JOHNSTOWN
JOINT WATER
BOARD | 7.29 | 162 | | NEW YORK | WATERTOWN
(C) WWTP | JEFFERSON | WATERTOWN,
CITY OF | 9.105 | 202 | | NEW YORK | ROME (C) STP | ONEIDA | ROME, CITY OF | 6.683 | 149 | | NEW YORK | BINGHAMTON-
JOHNSON
CITY JT.S
BD.STP | BROOME | BINGHAMTON -
JOHNSON CITY
JOINT SEWAGE
BOARD | 19.079 | 424 | | NEW YORK | ENDICOTT (V)
STP | BROOME | ENDICOTT,
VILLAGE OF | 6.387 | 142 | | NEW YORK | CORTLAND
(C) WWTP | CORTLAND | CORTLAND,
CITY OF | 6.167 | 137 | | NEW YORK | ONONDAGA
(CO) METRO
SYRACUSE
STP | ONONDAGA | ONONDAGA
COUNTY DEPT.
OF DRAINAGE &
SANITATION | 64.395 | 1431 | | NEW
YORK | ONONDAGA
(CO) OAK
ORCHARD
WWTP | ONONDAGA | ONONDAGA COUNTY DEPT. OF DRAINANGE & SANITATION | 5.583 | 124 | | NEW YORK | ITHACA (C)
ITHACA AREA
STP | TOMPKINS | ITHACA, CITY OF | 6.1 | 136 | | NEW YORK | CHEMUNG
(CO) ELMIRA
SD STP | CHEMUNG | ELMIRA, CITY OF
(CHEMUNG CO.
SD OWNER) | 6.081 | 135 | | NEW YORK | WEBSTER (T)
WWTP &
ONSITES | MONROE | WEBSTER,
TOWN OF | 6.171 | 137 | | NEW YORK | JAMESTOWN
(C) WWTP | CHAUTAUQUA | JAMESTOWN
DPW | 5.891 | 131 | | NEW YORK | BUFFALO(SE
WER
AUTH.)BIRD
ISLAND STP | ERIE | BUFFALO
SEWER
AUTHORITY | 149 | 3311 | | NEW YORK | TONAWANDA
(T) WWTP | ERIE | TONAWANDA,
TOWN OF | 19.625 | 436 | | NEW YORK | LOCKPORT
(C) WWTP | NIAGARA | LOCKPORT DPW | 8.8 | 196 | | NEW YORK | NÓRTH
TONAWANDA
(C) WWTP | NIAGARA | NORTH
TONAWANDA,
CITY OF | 5.746 | 128 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------------|--|-------------|----------------------------------|----------------------------|---| | NORTH CAROLINA | SOUTH
BURLINGTON
WWTP | ALAMANCE | BURLINGTON,
CITY OF | 7.4 | 164 | | NORTH CAROLINA | EAST
BURLINGTON
WWTP | ALAMANCE | BURLINGTON,
CITY OF | 7.9 | 176 | | NORTH CAROLINA | BUNCOMBE
COUNTY MSD
WWTP | BUNCOMBE | MET SEW DIST
OF BUNCOMBE | 20.08 | 446 | | NORTH CAROLINA | NORTH
DURHAM
WATER REC.
FAC. | DURHAM | DURHAM, CITY
OF | 8.3 | 184 | | NORTH CAROLINA | SOUTH
DURHAM
WATER REC.
FAC. | DURHAM | DURHAM, CITY
OF | 8.4 | 187 | | NORTH CAROLINA | ROCKY
MOUNT WWTP | EDGECOMBE | ROCKY MOUNT,
CITY OF | 13 | 289 | | NORTH CAROLINA | ARCHIE
ELLEDGE
WWTP | FORSYTH | CITY/COUNTY
UTILITIES COM | 23.55 | 523 | | NORTH CAROLINA | HIGH POINT
EASTSIDE
WWTP | GUILFORD | HIGH POINT,
CITY OF | 8.23 | 183 | | NORTH CAROLINA | NORTH
BUFFALO
WWTP | GUILFORD | GREENSBORO,
CITY OF | 14.3 | 318 | | NORTH CAROLINA | MCALPINE
CREEK WWTP | MECKLENBURG | CHARLOTTE-
MECKLENBURG
UTI | 28.68 | 637 | | NORTH CAROLINA | IRWIN CREEK
WWTP | MECKLENBURG | CHARLOTTE-
MECKLENBURG
UTI | 11.48 | 255 | | NORTH CAROLINA | SUGAR
CREEK WWTP | MECKLENBURG | CHARLOTTE-
MECKLENBURG
UTI | 13.3 | 296 | | NORTH CAROLINA | J A LOUGHLIN
WWTP | NEW HANOVER | WILMINGTON
DEPT OF PUB W | 9.69 | 215 | | NORTH CAROLINA | MKEAN
MAFFITT
WWTP (S) | NEW HANOVER | WILMINGTON,
DEPT OF PUB W | 8.48 | 188 | | NORTH CAROLINA | MASON FARM
WWTP | ORANGE | ORANGE WAT
AND SEW AUTH | 5.8 | 129 | | NORTH CAROLINA | MT. AIRY
WWTP | SURRY | MT AIRY, TOWN
OF | 5.448 | 121 | | NORTH CAROLINA | HOMINY
CREEK WWTP | WILSON | WILSON, CITY
OF | 8.93 | 198 | | NORTH DAKOTA | FARGO WWTP | CASS | FARGO
MUNICIPAL
WWTP | 12.58 | 280 | | ОНЮ | ALLIANCE
WWTP &
SEWERS | STARK | CITY OF
ALLIANCE | 6.2 | 138 | | OHIO | ASHTABULA
WWTP &
SEWER
SYSTEM | ASHTABULA | CITY OF
ASHTABULA | 7 | 156 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |-------|--|------------|--|----------------------------|---| | ОНЮ | UPPER MILL
CREEK WWTP
& SEWERS | BUTLER | BUTLER
COUNTY
DEPARTMENT
OF
ENVIRONMENTA
L SERVICES | 9.11 | 202 | | ОНЮ | NORTH
REGIONAL
WWTP | MONTGOMERY | TRI CITIES NORTH REGIONAL WASTEWATER AUTHORITY | 7.937 | 176 | | ОНЮ | SOUTHERLY
WWTP | CUYAHOGA | NORTHEAST
OHIO REGIONAL
SEWER
DISTRICT | 200 | 4444 | | ОНЮ | COLUMBUS
JACKSON
PIKE WWTP &
SEWERS | FRANKLIN | COLUMBUS
DIVISION OF
SEWERAGE AND
DRAINAGE | 68 | 1511 | | ОНЮ | COLUMBUS
SOUTHERLY
WWTP &
SEWERS | FRANKLIN | COLUMBUS
DIVISION OF
SEWERAGE AND
DRAINAGE | 92 | 2044 | | ОНЮ | ELYRIA WWTP
& SEWER
SYSTEM | LORAIN | CITY OF ELYRIA | 7.89 | 175 | | ОНЮ | EUCLID WWTP
& SEWER
SYSTEM | CUYAHOGA | CITY OF EUCLID | 20.64 | 459 | | ОНЮ | FAIRFIELD
WWTP &
SEWER
SYSTEM | BUTLER | CITY OF
FAIRFIELD | 6.7 | 149 | | ОНЮ | FINDLAY
WWTP &
SEWER
SYSTEM | HANCOCK | CITY OF
FINDLAY | 9.07 | 202 | | ОНЮ | FOSTORIA
WWTP &
SEWER
SYSTEM | WOOD | CITY OF
FOSTORIA | 5.7 | 127 | | ОНЮ | FREMONT
WPCC &
SEWER
SYSTEM | SANDUSKY | CITY OF
FREMONT | 5 | 111 | | OHIO | LITTLE MIAMI
DRAINAGE
BASIN/WWTP | HAMILTON | MSD OF
GREATER
CINCINNATI | 34.3 | 762 | | ОНЮ | SYCAMORE
CREEK
DRAINAGE
BASIN/WWTP | HAMILTON | MSD OF
GREATER
CINCINNATI | 6.7 | 149 | | ОНЮ | GREATER MENTOR WWTP & SEWER SYSTEM | LAKE | LAKE COUNTY
DEPARTMENT
OF UTILITIES | 11.26 | 250 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------|--|-----------|--------------------------------------|----------------------------|---| | OHIO | LAKEWOOD
WWTP &
SEWER
SYSTEM | CUYAHOGA | CITY OF
LAKEWOOD | 7 | 156 | | ОНЮ | LIMA WWTP &
SEWER
SYSTEM | ALLEN | CITY OF LIMA | 12 | 267 | | ОНЮ | LORAIN
BLACK RIVER
WWTP | LORAIN | CITY OF LORAIN | 13.1 | 291 | | OHIO | MANSFIELD
WWTP &
SEWER
SYSTEM | RICHLAND | CITY OF
MANSFIELD | 12 | 267 | | ОНЮ | MASSILLON
WWTP &
SEWER
SYSTEM | STARK | CITY OF
MASSILLON | 11 | 244 | | ОНЮ | MIDDLETOWN
WWTP &
SEWER
SYSTEM | BUTLER | CITY OF
MIDDLETOWN | 16 | 356 | | ОНЮ | NEWARK
WWTP &
SEWER
SYSTEM | LICKING | CITY OF
NEWARK | 10 | 222 | | ОНЮ | NILES WWTP
& SEWER
SYSTEM | TRUMBULL | CITY OF NILES | 5.31 | 118 | | ОНЮ | NORTH OLMSTED WWTP & SEWER SYSTEM | CUYAHOGA | CITY OF NORTH
OLMSTED | 7 | 156 | | ОНЮ | ROCKY RIVER
WWTP &
SEWER
SYSTEM | CUYAHOGA | CITY OF ROCKY
RIVER | 16.063 | 357 | | ОНЮ | SANDUSKY
WWTP &
SEWER
SYSTEM | ERIE | CITY OF
SANDUSKY | 12.5 | 278 | | ОНЮ | SPRINGFIELD
WWTP &
SEWER
SYSTEM | CLARK | CITY OF
SPRINGFIELD | 14 | 311 | | OHIO | WASHINGTON
CH WWTP &
SEWERS | FAYETTE | CITY OF
WASHINGTON
COURT HOUSE | 5.36 | 119 | | ОНЮ | WOOSTER
WWTP &
SEWER
SYSTEM | WAYNE | CITY OF
WOOSTER | 6 | 133 | | OKLAHOMA | ENID WWT | GARFIELD | ENID, CITY OF,
S-20931 | 8.5 | 189 | | OKLAHOMA | STILLWATER
WWT | PAYNE | STILLWATER,
CITY OF, S-
20947 | 6.8 | 151 | | OKLAHOMA | NORMAN
(MAIN) WWT | CLEVELAND | NORMAN, CITY
OF S-20616 | 12 | 267 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |--------------|-------------------------------------|--------------|--|----------------------------|---| | OKLAHOMA | TULSA
NORTHSIDE
WWT | TULSA | TULSA
METROPOLITAN
UTILITY
AUTHORITY, S-
21309 | 36.1 | 802 | | OREGON | MEDFORD
STP | JACKSON | MEDFORD, CITY
OF | 20.05 | 446 | | OREGON | MCMINNVILLE
WWTP | YAMHILL | MCMINNVILLE,
CITY OF | 5.5 | 122 | | PENNSYLVANIA | VALLEY
FORGE
SEWER AUTH | CHESTER | VALLEY FORGE
SEWER AUTH | 9.3 | 207 | | PENNSYLVANIA | WEST
GOSHEN STP | CHESTER | WEST GOSHEN
SEWER AUTH | 5.57 | 124 | | PENNSYLVANIA | AMBLER
BORO STP | MONTGOMERY | AMBLER,
BOROUGH OF | 5.79 | 129 | | PENNSYLVANIA | WARMINSTER
STP | BUCKS | WARMINSTER
TWNSHP MUN
AUT | 6 | 133 | | PENNSYLVANIA | PHILADELPHI
A WATER
DEPT (SE) | PHILADELPHIA | PHILADELPHIA
WATER DEPT -
WPC DIVISION | 94.8 | 2107 | | PENNSYLVANIA | DOWNINGTO
WN AREA STP | CHESTER | DOWNINGTOWN
AREA REGIONAL
AUTH | 6.41 | 142 | | PENNSYLVANIA | NORRISTOWN
MUN WASTE
AUTH | MONTGOMERY | NORRISTOWN
MUN WASTE
AUTH | 6.08 | 135 | | PENNSYLVANIA | HARRISBURG
AUTHORITY
STP | DAUPHIN | HARRISBURG
AUTHORITY | 13.2 | 293 | | PENNSYLVANIA | ALLENTOWN
CITY STP | LEHIGH | ALLENTOWN
AUTHORITY | 34 | 756 | | PENNSYLVANIA | LEBANON
CITY STP | LEBANON | LEBANON
AUTHORITY,
CITY OF | 6 | 133 | | PENNSYLVANIA | BETHLEHEM
CITY STP | NORTHAMPTON | BETHLEHEM
AUTHORITY,
CITY OF | 12.6 | 280 | | PENNSYLVANIA | READING
AREA FRITZ
ISLAND STP | BERKS | READING, CITY
OF | 15.66 | 348 | | PENNSYLVANIA | EASTON
AREA STP | NORTHAMPTON | EASTON AREA
JOINT SEW
AUTH | 6.7 | 149 | | PENNSYLVANIA | SCRANTON
SEWER
AUTHORITY | LACKAWANNA | SCRANTON SEW
AUTH | 15.9 | 353 | | PENNSYLVANIA | WYOMING
VALLEY SAN
AUTH | LUZERNE | WYOMING
VALLEY SAN
AUTH | 22.3 | 496 | | PENNSYLVANIA | YORK CITY
SEW AUTH | YORK | YORK CITY
SEWER
AUTHORITY | 11.74 | 261 | | PENNSYLVANIA | JOHNSTOWN
CITY STP | CAMBRIA | JOHNSTOWN,
CITY OF | 9 | 200 | | PENNSYLVANIA | ALTOONA
EASTERLY
STP | BLAIR | ALTOONA CITY
AUTHORITY | 5.858 | 130 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------------|--|--------------------|----------------------------------|----------------------------|---| | PENNSYLVANIA | ALTOONA
WESTERLY
STP | BLAIR | ALTOONA CITY
AUTHORITY | 6.2 | 138 | | PENNSYLVANIA | SHAMOKIN-
COAL TWP
STP | NORTHUMBERL
AND | SHAMOKIN-
COAL TWP JT
AUTH | 6 | 133 | | PENNSYLVANIA | INDIANA
BORO STP | INDIANA | INDIANA,
BOROUGH OF | 7.25 | 161 | | PENNSYLVANIA | KISKI VALLEY
WPCA | WESTMORELAN
D | KISKI VALLEY
WPCA | 6 | 133 | | PENNSYLVANIA | ERIE CITY
STP | ERIE | ERIE SEWER
AUTHORITY | 68.59 | 1524 | | PENNSYLVANIA | NEW CASTLE
STP | LAWRENCE | NEW
CASTLE
SAN AUTH | 6.02 | 134 | | RHODE ISLAND | VEOLIA
WATER -
CRANSTON
WPCF | PROVIDENCE | CRANSTON,
DPW | 13.4 | 298 | | RHODE ISLAND | WOONSOCKE
T REGIONAL
WWTF | PROVIDENCE | WOONSOCKET
DPW SEWAGE
DIV | 7.85 | 174 | | RHODE ISLAND | BUCKLIN PT
STP | PROVIDENCE | NARRAGANSETT
BAY COMM. | 23.6 | 524 | | SOUTH CAROLINA | METRO WWTP | RICHLAND | COLUMBIA, CITY
OF | 44.575 | 991 | | SOUTH CAROLINA | MANCHESTER
CREEK WWTP | YORK | ROCK HILL, CITY
OF | 15 | 333 | | SOUTH CAROLINA | FLORENCE/M
AIN PLANT | FLORENCE | FLORENCE
UTILITIES DIVISI | 9.9 | 220 | | SOUTH DAKOTA | RAPID CITY
WWT
FACILITY | PENNINGTON | RAPID CITY,
CITY OF | 10.3 | 229 | | SOUTH DAKOTA | SIOUX FALLS
WWT
FACILITY | MINNEHAHA | SIOUX FALLS,
CITY OF | 11.79 | 262 | | TENNESSEE | OOSTANAULA
WWTP | MCMINN | ATHENS UTILITY
BOARD | 6.318 | 140 | | TENNESSEE | MOCCASIN
BEND WWTP | HAMILTON | CHATTANOOGA,
CITY OF | 70.227 | 1561 | | TENNESSEE | CLEVELAND
UTILITIES STP | BRADLEY | CLEVELAND
UTILITIES | 8.21 | 182 | | TENNESSEE | COOKEVILLE
STP | PUTNAM | COOKEVILLE,
CITY OF | 6.83 | 152 | | TENNESSEE | JACKSON UD
WWTP -
MILLER
AVENUE | MADISON | JACKSON
ENERGY
AUTHORITY | 11.5 | 256 | | TENNESSEE | BRUSH
CREEK STP | WASHINGTON | JOHNSON CITY,
CITY OF | 7.471 | 166 | | TENNESSEE | KINGSPORT
STP | SULLIVAN | KINGSPORT,
TOWN OF | 7.74 | 172 | | TENNESSEE | KUWAHEE
WWTP | KNOX | KNOXVILLE
UTILITIES
BOARD | 35.3 | 784 | | TENNESSEE | FOURTH
CREEK WWTP | KNOX | KNOXVILLE
UTILITIES
BOARD | 9.09 | 202 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |-----------|--------------------------------------|--------------|---|----------------------------|---| | TENNESSEE | NASHVILLE -
DRY CREEK
WWTP | DAVIDSON | METRO.
NASHVILLE
DEPT. OF
WATER &
SEWER SVCS. | 17.6 | 391 | | TENNESSEE | NASHVILLE -
WHITE'S
CREEK WWTP | DAVIDSON | METRO. NASHVILLE DEPT. OF WATER & SEWER SVCS. | 34.935 | 776 | | TEXAS | WACO
REGIONAL
WWTP | MCLENNAN | BRAZOS RIVER
AUTHORITY | 21.23 | 472 | | TEXAS | RIVER ROAD
WWTP | POTTER | AMARILLO | 12.01 | 267 | | TEXAS | HOLLYWOOD
ROAD WWTP | RANDALL | AMARILLO | 5.33 | 118 | | TEXAS | MIDLAND
PLANT #1
WWTP | MIDLAND | MIDLAND | 13.21 | 294 | | TEXAS | HASKELL ST
WWTP | EL PASO | EL PASO | 16.792 | 373 | | TEXAS | LAREDO STP | WEBB | LAREDO | 10.2 | 227 | | TEXAS | CARTER'S
CREEK WWTP | BRAZOS | COLLEGE
STATION | 6.5 | 144 | | TEXAS | CENTRAL
WWTP -
DALLAS | DALLAS | DALLAS | 166.704 | 3705 | | TEXAS | SOUTHSIDE
WWTP -
DALLAS | DALLAS | DALLAS | 78.81 | 1751 | | TEXAS | ROWLETT
CREEK WWTP | DALLAS | GARLAND | 17.066 | 379 | | TEXAS | POST OAK
CREEK WWTP | GRAYSON | SHERMAN | 11.69 | 260 | | TEXAS | VILLAGE
CREEK STP | TARRANT | FORT WORTH | 138.9 | 3087 | | TEXAS | WILSON
CREEK WWTP | COLLIN | NORTH TEXAS
MWD | 31.327 | 696 | | TEXAS | WESTSIDE
STP #2 | SMITH | TYLER | 9.56 | 212 | | TEXAS | SOUTHSIDE
STP #2 | SMITH | TYLER | 5.12 | 114 | | TEXAS | LONGVIEW
MAIN WWTP | GREGG | LONGVIEW | 14.41 | 320 | | TEXAS | HILLEBRANDT
WWTP | JEFFERSON | BEAUMONT | 24 | 533 | | TEXAS | VINCE BAYOU
WWTP | HARRIS | PASADENA | 6.82 | 152 | | TEXAS | DOS RIOS
WWTP | BEXAR | SAN ANTONIO | 58 | 1289 | | VIRGINIA | NORTHSIDE/S
OUTHSIDE
STP | DANVILLE | DANVILLE, CITY
OF | 16.05 | 357 | | VIRGINIA | MARTINSVILL
E STP | MARTINSVILLE | MARTINSVILLE,
CITY OF | 5.35 | 119 | | VIRGINIA | HARRISONBU
RG-
ROCKINGHAM | ROCKINGHAM | HARRISONBURG
-ROCKINGHAM | 7.5 | 167 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential Electric Capacity (kW) | |---------------|---------------------------------------|---------------------|---|----------------------------|----------------------------------| | VIRGINIA | RICHMOND
STP | RICHMOND CITY | RICHMOND,
CITY OF | 59.53 | 1323 | | VIRGINIA | FALLING
CREEK STP | CHESTERFIELD | CHESTERFIELD
COUNTY | 7.5 | 167 | | VIRGINIA | SOUTH
CENTRAL
REGIONAL
WWTP | PETERSBURG | SOUTH
CENTRAL
WASTEWATER
AUTHORITY | 20 | 444 | | VIRGINIA | MOORES
CREEK STP | CHARLOTTESVIL
LE | RIVANNA
WATER AND
SEWER | 10.37 | 230 | | VIRGINIA | HOPEWELL
STP | HOPEWELL | HOPEWELL,
CITY OF | 33.69 | 749 | | VIRGINIA | JAMES RIVER
W P C F | NEWPORT
NEWS | HAMPTON
ROADS SAN
DIST | 13.99 | 311 | | VIRGINIA | YORK RIVER
W P C F | YORK | HAMPTON
ROADS SAN
DIST | 6.66 | 148 | | VIRGINIA | ARMY BASE W
P C F | NORFOLK | HAMPTON
ROADS SAN
DIST | 14.18 | 315 | | VIRGINIA | VIRGINIA
INITIATIVE
PLANT | NORFOLK | HAMPTON ROAD
SAN DIST | 28.05 | 623 | | VIRGINIA | NANSEMOND
W P C F | SUFFOLK | HAMPTON
ROADS SAN.
DIST | 17 | 378 | | VIRGINIA | ALEXANDRIA
STP | ALEXANDRIA | ALEXANDRIA
SANITATION | 36.8 | 818 | | VIRGINIA | ARLINGTON
CO WPCP | ARLINGTON | ARLINGTON
COUNTY | 22.43 | 498 | | WASHINGTON | W.
BREMERTON/
CHARLESTON
STP | KITSAP | BREMERTON,
CITY OF | 7.6 | 169 | | WASHINGTON | CENT. KITSAP
REG. STP | KITSAP | KITSAP CO.
COMMISSIONER
S | 8 | 178 | | WASHINGTON | RICHLAND
STP | BENTON | RICHLAND
UTILITY
SERVICES | 6 | 133 | | WASHINGTON | SPOKANE STP | SPOKANE | SPOKANE, CITY
OF | 44 | 978 | | WASHINGTON | TACOMA
CENTRAL STP
#1 | PIERCE | TACOMA, CITY
OF | 26 | 578 | | WASHINGTON | WALLA WALLA
STP | WALLA WALLA | WALLA WALLA,
CITY OF | 6.18 | 137 | | WASHINGTON | YAKIMA
REGIONAL
WWTP | YAKIMA | YAKIMA, CITY
OF | 11.308 | 251 | | WEST VIRGINIA | FAIRMONT
STP | MARION | FAIRMONT,
TOWN OF | 6.06 | 135 | | WEST VIRGINIA | MORGANTOW
N WPC FAC | MONONGALIA | MORGANTOWN
UTILITY BOARD | 8.3 | 184 | | WEST VIRGINIA | WHEELING
WPC FAC | ОНЮ | WHEELING
SANITARY
BOARD | 10 | 222 | | State | Facility
Name | County | Authority
Name | Total
Influent
(MGD) | Potential Electric Capacity (kW) | |---------------|------------------------------------|-------------|---|----------------------------|----------------------------------| | WEST VIRGINIA | PINEY CREEK
STP | RALEIGH | BECKLEY, CITY
OF | 8 | 178 | | WISCONSIN | APPLETON
WWTP | OUTAGAMIE | APPLETON, CITY
OF | 14.564 | 324 | | WISCONSIN | BELOIT WWTP | ROCK | BELOIT, CITY OF | 5.67 | 126 | | WISCONSIN | BROOKFIELD -
FOX RIVER
WPCC | WAUKESHA | BROOKFIELD
FOX WATER
POLLUTION
CONTROL | 6.74 | 150 | | WISCONSIN | EAU CLAIRE
WWTP | EAU CLAIRE | EAU CLAIRE,
CITY OF | 6.4 | 142 | | WISCONSIN | HEART OF
THE VALLEY
MSD | OUTAGAMIE | HEART OF THE VALLEY METROPOLITAN SEWERAGE DIST. | 5.84 | 130 | | WISCONSIN | JANESVILLE
WWTP | ROCK | JANESVILLE,
CITY OF | 12.23 | 272 | | WISCONSIN | KENOSHA,
CITY OF -
WWTP | KENOSHA | KENOSHA, CITY
OF | 21.8 | 484 | | WISCONSIN | LA CROSSE
WWTP | LA CROSSE | LA CROSSE,
CITY OF | 10.18 | 226 | | WISCONSIN | MADISON
MSD STP | DANE | MADISON MSD | 41 | 911 | | WISCONSIN | MANITOWOC
WWTP | MANITOWOC | MANITOWOC,
CITY OF | 8.72 | 194 | | WISCONSIN | RACINE STP | RACINE | RACINE, CITY
OF | 25.71 | 571 | | WISCONSIN | SHEBOYGAN
REGIONAL
WWTP | SHEBOYGAN | SHEBOYGAN,
CITY OF | 12 | 267 | | WISCONSIN | SUN PRAIRIE
STP | DANE | SUN PRAIRIE,
CITY OF | 6.321 | 140 | | WISCONSIN | WAUKESHA
STP | WAUKESHA | WAUKESHA
CITY OF | 11.56 | 257 | | WISCONSIN | WAUSAU
WWTP | MARATHON | WAUSAU, CITY
OF | 5.31 | 118 | | WISCONSIN | SALEM
UTILITY
DISTRICT STP | KENOSHA | SALEM, TOWN
OF | 6.96 | 155 | | WYOMING | METRO
CHEYENNE
WWTP | LARAMIE | CHEYENNE
BOARD OF PUB
UTILITIES | 5.491 | 122 | | PUERTO RICO | BARCELONET
A REGIONAL
SYSTEM | BARCELONETA | PRASA | 6.15 | 137 | ## **A2:** Facilities with off-gas utilization | State | Facility Name | County | Authority Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |------------|--------------------------------|--------------|--|----------------------------|---| | ARIZONA | WILDCAT HILL
WWTF | COCONINO | CITY OF
FLAGSTAFF,
UTILITIES DEPT. | 7.8 | 173 | | ARIZONA | TOLLESON WWTF | MARICOPA | TOLLESON, CITY
OF | 13 | 289 | | ARIZONA | INA ROAD STP | PIMA | PIMA CO WW
MGMT DEPT | 31 | 689 | | ARKANSAS | LITTLE ROCK
ADAMS FIELD STP | PULASKI | LITTLE ROCK | 30 | 667 | | CALIFORNIA | ELK RIVER WWTF | HUMBOLDT | EUREKA, CITY OF | 5 | 111 | | CALIFORNIA | RICHMOND WWTF | CONTRA COSTA | RICHMOND, CITY
OF | 6.6 | 147 | | CALIFORNIA | EAST BAY MUD
MAIN WWTP | ALAMEDA | EAST BAY MUD | 80 | 1778 | | CALIFORNIA | SAN LEANDRO
WPCP | ALAMEDA | SAN LEANDRO,
CITY OF | 6 | 133 | | CALIFORNIA | SO SF-SAN
BRUNO WWTF | SAN MATEO | CITY OF SOUTH
SAN FRANCISCO | 10.97 | 244 | | CALIFORNIA | ORO LOMA WWTF | ALAMEDA | ORO LOMA
SANITARY
DISTRICT | 17.3 | 384 | | CALIFORNIA | SAN PABLO WWTF | CONTRA COSTA | WEST COUNTY
WASTEWATER
DISTRICT | 7.8 | 173 | | CALIFORNIA | INDUSTRIAL
SHORE SUB FAC | CONTRA COSTA | DELTA DIABLO
SAN DIST | 7.45 | 166 | | CALIFORNIA | ALVARADO WWTF | ALAMEDA | UNION SANITARY
DISTRICT | 30 | 667 | | CALIFORNIA | LIVERMORE WRP | ALAMEDA | LIVERMORE, CITY
OF | 6.4 | 142 | | CALIFORNIA | MRWCPA WWTF | MONTEREY | MONTEREY REGIONAL WATER POLLUTION CONTROL AGENCY | 21.5 | 478 | | CALIFORNIA | SIMI VALLEY
WWTP | VENTURA | SIMI VALLEY, CITY
OF | 9 | 200 | | CALIFORNIA | JOINT WPCP | LOS ANGELES | LACSD | 322 | 7156 | | CALIFORNIA | LANCASTER WRP | LOS ANGELES | COUNTY SANITATION DISTRICTS OF LOS ANGELES COUNTY | 13.2 | 293 | | CALIFORNIA |
PALMDALE WRP | LOS ANGELES | COUNTY SANITATION DISTRICTS OF LOS ANGELES COUNTY | 9.2 | 204 | | CALIFORNIA | HYPERION WWTP | LOS ANGELES | CITY OF LOS
ANGELES,
BUREAU OF
SANITATION | 362 | 8044 | | State | Facility Name | County | Authority Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |-------------|---|----------------|---|----------------------------|---| | CALIFORNIA | OXNARD WWTP | VENTURA | OXNARD, CITY OF | 22.4 | 498 | | CALIFORNIA | FRESNO-CLOVIS
REGIONAL WRF | FRESNO | FRESNO, CITY OF | 75 | 1667 | | CALIFORNIA | MERCED STP | MERCED | MERCED, CITY OF | 7.7 | 171 | | CALIFORNIA | EASTERLY WWTP | SOLANO | VACAVILLE, CITY
OF | 8.4 | 187 | | CALIFORNIA | VICTOR VALLEY
REGIONAL WWRP | SAN BERNARDINO | VIICTOR VALLEY
WASTEWATER
RECLAMATION
AUTHORITY | 10.7 | 238 | | CALIFORNIA | SAN BERNARDINO
WRP | SAN BERNARDINO | SAN BERNARDINO
MUNICIPAL
WATER
DEPARTMENT | 26.5 | 589 | | CALIFORNIA | OCSD WRP NO. 1 | ORANGE | ORANGE COUNTY
SANITATION
DISTRICT | 88 | 1956 | | CALIFORNIA | OCSD WWTP NO.
2 | ORANGE | ORANGE COUNTY
SANITATION
DISTRICT | 151 | 3356 | | CALIFORNIA | ENCINA WPCF | SAN DIEGO | ENCINA
WASTEWATER
AUTHORITY | 26.2 | 582 | | CALIFORNIA | LATHAM WWTP | ORANGE | SOUTH ORANGE
COUNTY
WASTEWATER
AUTHORITY | 10.9 | 242 | | CALIFORNIA | POINT LOMA
WWTF | SAN DIEGO | CITY OF SAN
DIEGO
METROPOLITAN
WASTEWATER
DEPART. | 184 | 4089 | | CALIFORNIA | HALE AVENUE
RRF | SAN DIEGO | ESCONDIDO, CITY
OF | 15.625 | 347 | | COLORADO | C SPRINGS WWTP | EL PASO | COLORADO
SPRINGS, CITY OF | 32 | 711 | | COLORADO | METRO
RECLAMAT DIST
CENTRAL PLANT | ADAMS | METRO WW
RECLAM DISTRICT | 160 | 3556 | | CONNECTICUT | BRISTOL STP | HARTFORD | BRISTOL, CITY OF | 9.569 | 213 | | CONNECTICUT | FAIRFIELD WPCF | FAIRFIELD | FAIRFIELD, TOWN
OF | 9.078 | 202 | | CONNECTICUT | GREENWICH
WPCF | FAIRFIELD | GREENWICH
CHIEF EXECUTIVE | 9.413 | 209 | | CONNECTICUT | ROCKY HILL
WPCF | HARTFORD | METROPOLITAN
DISTRICT | 7.09 | 158 | | CONNECTICUT | MANCHESTER
WPCF | HARTFORD | MANCHESTER,
TOWN OF | 6.449 | 143 | | CONNECTICUT | MERIDEN WPCF | NEW HAVEN | MERIDEN, CITY OF | 9.672 | 215 | | CONNECTICUT | MILFORD -
HOUSATONIC
WPCF | NEW HAVEN | MILFORD, TOWN
OF | 6.827 | 152 | | CONNECTICUT | WALLINGFORD
WPCF | NEW HAVEN | WALLINGFORD,
TOWN OF | 5.364 | 119 | | FLORIDA | BROWARD CNTY
N. DIST REG | BROWARD | BROWARD
COUNTY
UTILITIES | 70 | 1556 | | FLORIDA | PLANTATION STP | BROWARD | BROWARD CO.
UTILITIES | 11 | 244 | | State | Facility Name | County | Authority Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |---------------|--|-------------|---|----------------------------|---| | GEORGIA | UTOY CREEK
WWTP | FULTON | ATLANTA PUBLIC
WORKS DEPA | 32.314 | 718 | | ILLINOIS | DANVILLE STW | VERMILION | DANVILLE S D | 10.1 | 224 | | ILLINOIS | FOX METRO WRD
STP | KENDALL | FOX METRO WRD | 24.5 | 544 | | INDIANA | FORT WAYNE
WPCP | ALLEN | FORT WAYNE
BOARD OF PUBLI | 85 | 1889 | | INDIANA | MUNCIE WWTP | DELAWARE | MUNCIE
SANITARY
DISTRICT | 24 | 533 | | INDIANA | LAFAYETTE
WWTP | TIPPECANOE | LAFAYETTE, CITY
OF | 16 | 356 | | INDIANA | MARION WWTP | GRANT | MARION, CITY OF | 12 | 267 | | INDIANA | RICHMOND SD | WAYNE | RICHMOND
SANITARY
DISTRIC | 18 | 400 | | IOWA | FT. DODGE WWTP | WEBSTER | FT DODGE, CITY
OF | 6.5 | 144 | | KENTUCKY | ASHLAND WPCP | BOYD | ASHLAND, CITY
OF | 6.01 | 134 | | KENTUCKY | MCCRACKEN CO
JSA-PADUCAH | MCCRACKEN | PADUCAH, CITY
OF | 6.65 | 148 | | MASSACHUSETTS | BROCKTON WPCF | BRISTOL | BROCKTON, CITY
OF | 15.73 | 350 | | MISSISSIPPI | HCW&SWMA,
EAST BILOXI
POTW | HARRISON | HARR. CO. WWMD | 8.5 | 189 | | NEVADA | CARSON CITY
WWTF | CARSON CITY | CARSON CITY
PUBLIC WORKS | 5 | 111 | | NEVADA | RENO-SPARKS
WWTF | WASHOE | CITY OF SPARKS
PUBLIC WORKS
DEPT. | 30 | 667 | | NEW JERSEY | NORTHERN WPC
FAC -OCUA | OCEAN | OCEAN COUNTY
UA | 23 | 511 | | NEW JERSEY | CENTRAL WPC
FAC - OCUA | OCEAN | OCEAN COUNTY
UA | 23 | 511 | | NEW JERSEY | HAMILTON TWP
WPCF | MERCER | HAMILTON
TOWNSHIP WPC
OFFICE | 17 | 378 | | NEW YORK | NEW YORK (C) -
WARDS ISLAND
WPCP | NEW YORK | NYCDEP | 250 | 5556 | | NEW YORK | NEW YORK (C) -
HUNTS POINT
WPCP | BRONX | NYCDEP | 122.12 | 2714 | | NEW YORK | NEW YORK (C) -
BOWERY BAY
WPCP | QUEENS | NYCDEP | 129.11 | 2869 | | NEW YORK | NEW YORK (C) -
TALLMAN ISLAND
WPCP | QUEENS | NYCDEP | 61.06 | 1357 | | NEW YORK | NEW YORK (C) -
JAMAICA WPCP | QUEENS | NYCDEP | 96.09 | 2135 | | NEW YORK | NEW YORK (C) -
26TH. WARD
WPCP | KINGS | NYCDEP | 64.06 | 1424 | | NEW YORK | NEW YORK (C) -
RED HOOK WPCP | KINGS | NYCDEP | 60 | 1333 | | State | Facility Name | County | Authority Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------|---|------------|--|----------------------------|---| | NEW YORK | NEW YORK (C) -
PORT RICHMOND
WPCP | RICHMOND | NYCDEP | 34.03 | 756 | | NEW YORK | NEW YORK (C) -
CONEY ISLAND
WPCP | KINGS | NYCDEP | 93.09 | 2069 | | NEW YORK | NEW YORK (C) -
OWLS HEAD
WPCP | KINGS | NYCDEP | 87.09 | 1935 | | NEW YORK | WPCP | KINGS | NYCDEP | 271.26 | 6028 | | NEW YORK | NEW YORK (C) -
NORTH RIVER
WPCP | NEW YORK | NYCDEP | 170 | 3778 | | NEW YORK | NEW YORK (C) -
OAKWOOD BEACH
WPCP | RICHMOND | NYCDEP | 24.02 | 534 | | NEW YORK | NEW YORK (C) -
ROCKAWAY WPCP | QUEENS | NYCDEP | 21.02 | 467 | | ОНЮ | DAYTON WWTP & SEWER SYSTEM | MONTGOMERY | CITY OF DAYTON | 72 | 1600 | | ОНЮ | MILL CREEK
DRAINAGE
BASIN/WWTP | HAMILTON | MSD OF GREATER
CINCINNATI | 151 | 3356 | | ОНЮ | LANCASTER
WWTP & SEWER
SYSTEM | FAIRFIELD | CITY OF
LANCASTER | 5.52 | 123 | | ОНЮ | PORTSMOUTH
LAWSON RUN
WWTP & SEWERS | SCIOTO | CITY OF
PORTSMOUTH | 5 | 111 | | ОНЮ | ZANESVILLE
WWTP & SEWER
SYSTEM | MUSKINGUM | CITY OF
ZANESVILLE | 7.75 | 172 | | OREGON | KELLOGG CREEK
STP | CLACKAMAS | CLACKAMAS CO
SERV DIST 1 | 7.9 | 176 | | OREGON | TRI CITY WPCP | CLACKAMAS | WATER
ENVIRONMENT
SERVICES | 7 | 156 | | OREGON | GRESHAM STP | MULTNOMAH | GRESHAM, CITY
OF | 10.531 | 234 | | OREGON | TRYON CREEK
STP | CLACKAMAS | PORTLAND, CITY
OF | 6.98 | 155 | | OREGON | ROCK CREEK STP | WASHINGTON | CLEAN WATER
SERVICES, INC | 32.02 | 712 | | OREGON | SALEM WILLOW
LAKE STP | MARION | SALEM, CITY OF | 29.7 | 660 | | OREGON | MWMC -
EUGENE/SPRINGF
IELD STP | LANE | METROPOLITAN
WASTEWATER
MANAGEMENT
COMMISSION | 24.7 | 549 | | OREGON | CORVALLIS STP | BENTON | CORVALLIS, CITY
OF | 7.75 | 172 | | OREGON | GRANTS PASS
STP | JOSEPHINE | GRANTS PASS,
CITYOF | 5.2 | 116 | | OREGON | ALBANY STP | LINN | ALBANY, CITY OF | 5.7 | 127 | | OREGON | ST HELENS STP | COLUMBIA | ST HELENS, CITY
OF | 30.7 | 682 | | State | Facility Name | County | Authority Name | Total
Influent
(MGD) | Potential
Electric
Capacity
(kW) | |----------------|---|----------------|--|----------------------------|---| | PENNSYLVANIA | PHILADELPHIA
WATER DEPT (NE) | PHILADELPHIA | PHILADELPHIA
WATER DEPT -
WPC DIVISION | 196.7 | 4371 | | PENNSYLVANIA | PHILADELPHIA
WATER DEPT (SW) | PHILADELPHIA | PHILADELPHIA
WATER DEPT | 198.5 | 4411 | | PENNSYLVANIA | E NORR PLYM
WHIT STP | MONTGOMERY | E. NOR./PLY/WHIT
JSA | 6.26 | 139 | | SOUTH CAROLINA | MAULDIN RD
PLANT | GREENVILLE | WCRSA | 29 | 644 | | TEXAS | SOUTHEAST
PLANTS 1 2 .3 | LUBBOCK | LUBBOCK, CITY
OF | 20.78 | 462 | | TEXAS | PECAN CREEK
WWTP | DENTON | DENTON | 13.324 | 296 | | TEXAS | TEXARKANA
SOUTH REGIONAL
WWTP | BOWIE | TEXARKANA | 13.63 | 303 | | VERMONT | RUTLAND WPCF | RUTLAND | RUTLAND, CITY
OF | 5.7 | 127 | | VIRGINIA | WESTERN
VIRGINIA WATER
AUTH. WWTP | ROANOKE CITY | WESTERN
VIRGINIA WATER
AUTHORITY | 40.5 | 900 | | VIRGINIA | ATLANTIC W P C F | VIRGINIA BEACH | HAMPTON ROADS
SAN DIST | 34.65 | 770 | | WASHINGTON | WEST POINT
WWTP | KING | MUN OF METRO
SEATTLE | 325 | 7222 | | WASHINGTON | BUDD INLET STP | THURSTON | OLYMPIA, CITY OF | 17.9 | 398 | | WEST VIRGINIA | CHARLESTON
WWTF | KANAWHA | CHARLESTON,
CITY OF | 14 | 311 | | WEST VIRGINIA | PARKERSBURG
WWTF | WOOD | PARKERSBURG
SAN BD | 8.812 | 196 | ## Appendix B: Anaerobic Digester Design Criteria The following anaerobic digester design criteria were used to estimate the total wastewater influent flow rate that a typically sized digester can treat, as well as the biogas generation rate and the heat load of a typically sized digester. Design parameters were obtained from the sources listed below. | System Design Requirements | Value | Units | Source | |---------------------------------|--------------|---------------------|------------------| | Reactor Type | Complete Mix | | 2 | | Reactor Shape | Circular | | 2 | | Organic Load | | lbs/day VS | 1 | | Percent Solids in Flow | | % (w/w) | 1 | | Sludge Density | 8.5 | lbs/gal | 1 | | Flow to Reactor | 171625 | | | | Flow to Reactor | | gal/day | | | Flow to Reactor | | ft3/day | | | Reactor Depth | 20 | ft | 3 | | Design Load | 0.25 | lbs VS/ft3/day | 2 | | Total Reactor Volume | 54920 | ft3 | | | Reactor Area | 2746 | | | | Reactor Diameter | 60 | ft | 2 | | Retention Time | 20 | days | | | Influent Temp (Winter) | 50 | oF | 2 |
| Air Temp (Winter) | 50 | oF | 2 | | Earth around wall Temp (Winter) | 40 | oF | 2 | | Earth below floor Temp (Winter) | 40 | oF | 2 | | Reactor Temp | 95 | oF | 2
2
2
2 | | Influent Temp (Summer) | 80 | oF | 2 | | Air Temp (Summer) | 80 | oF | 2 | | Earth around wall Temp (Summer) | | oF | 2 | | Earth below floor Temp (Summer) | | oF | 2 | | Sp. Heat sludge | | Btu/(lb*deg F) | 2 | | Area walls | 3769.9 | | | | Area roof | 2827.4 | | | | Area floor | 2827.4 | | | | U walls (concrete) | | Btu/(hr*ft2*deg. F) | 2 | | U roof (concrete) | | Btu/(hr*ft2*deg. F) | 2 | | U floor (concrete) | | Btu/(hr*ft2*deg. F) | 2 | | Gas Generation | | cu ft/lb VS removed | 2 | | Gas Heat Content | | Btu/cu ft | 2 | | VS Removal Percent @ 20 days | 55 | , . | 1 | | VS Removed | | lbs/day | | | Gas Generation | | cu ft/day | | | Heat Potential of Gas | 54,370,800 | | | | Gas Generation per Capita | | cu ft/day/person | 2 | | Population Served by POTW | | persons | 2 | | Flow per Capita | | gal/day/person | 3 | | Total POTW Flow | 9.1 | MGD | | | Thermophilic | | | | | |---------------------------------|--------------|---------------------|------------------|--| | System Design Requirements | Value | Units | Source | | | Reactor Type | Complete Mix | | 2 | | | Reactor Shape | Circular | | 2 | | | Organic Load | 13730 | lbs/day VS | 1 | | | Percent Solids in Flow | 8 | % (w/w) | 1 | | | Sludge Density | 8.5 | lbs/gal | 1 | | | Flow to Reactor | 171625 | lbs/day | | | | Flow to Reactor | 20191 | gal/day | | | | Flow to Reactor | 2699 | ft3/day | | | | Reactor Depth | 20 | ft | 3 | | | Design Load | 0.5 | lbs VS/ft3/day | 2 | | | Total Reactor Volume | 27460 | ft3 | | | | Reactor Area | 1373 | ft | | | | Reactor Diameter | 42 | ft | 2 | | | Retention Time | | days | | | | Influent Temp (Winter) | 50 | oF | 2 | | | Air Temp (Winter) | 50 | oF | 2 | | | | | | | | | Earth below floor Temp (Winter) | 40 | oF | 2 | | | Reactor Temp | 130 | oF | 2
2
2 | | | Influent Temp (Summer) | 80 | oF | 2 | | | Air Temp (Summer) | 80 | oF | 2 | | | | | | | | | Earth below floor Temp (Summer) | 50 | oF | 2 | | | Sp. Heat sludge | 1.0 | Btu/(lb*deg F) | 2 | | | Area walls | 2627.3 | ft2 | | | | Area roof | 1373.3 | | | | | Area floor | 1373.3 | ft2 | | | | U walls (concrete) | 0.119748 | Btu/(hr*ft2*deg. F) | 2 | | | U roof (concrete) | | Btu/(hr*ft2*deg. F) | 2
2
2
2 | | | U floor (concrete) | 0.149685 | Btu/(hr*ft2*deg. F) | 2 | | | Gas Generation | 12 | cu ft/lb VS removed | 2 | | | Gas Heat Content | 600 | Btu/cu ft | 2 | | | VS Removal Percent @ 20 days | 55 | % | 1 | | | VS Removed | 7,552 | lbs/day | | | | Gas Generation | 90,618 | cu ft/day | | | | Heat Potential of Gas | 54,370,800 | | | | | Gas Generation per Capita | | cu ft/day/person | 2 | | | Population Served by POTW | 90,618 | persons | 2 | | | Flow per Capita | 100 | gal/day/person | 3 | | | Total POTW Flow | | MGD | | | - 1. Eckenfelder, Principals of Water Quality Management, 1980. - 2. Metcalf and Eddy, Wastewater Engineering and Design, 1991. - 3. Recommended Standards for Wastewater Facilities (10-State Standards), 2004. - ** Mesophilic digester is below grade (wall heat transfer with ground). ** Thermophilic digester is completely above ground (wall heat transfer with air). - ** With no CHP, only the amount of energy needed for digester heat load is used from gas. The rest is flared. - ** With CHP applications, all of the gas energy is run thorugh electric generator. The heat needed for the digester heat load is used from the heat recovered, and the rest is dumped.